Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048160945> ?p ?o ?g. }
- W3048160945 abstract "Objectives: To investigate the performance of radiomic-based quantitative analysis on CT images in predicting invasiveness of lung adenocarcinoma manifesting as pure ground-glass nodules (pGGNs). Methods: A total of 275 lung adenocarcinoma cases, with 322 pGGNs resected surgically and confirmed pathologically, from January 2015 to October 2017 were enrolled in this retrospective study. All nodules were split into training and test cohorts randomly with a ratio of 4:1 to establish models to predict between pGGN-like adenocarcinoma in situ (AIS)/minimally invasive adenocarcinoma (MIA) and invasive adenocarcinoma (IVA). Radiomic feature extraction was performed using Pyradiomics with semi-automatically segmented tumor regions on CT scans that were contoured with an in-house plugin for 3D-Slicer. Random forest (RF) and support vector machine (SVM) were used for feature selection and predictive model building in the training cohort. Three different predictive models containing conventional, radiomic, and combined models were built on the basis of the selected clinical, radiological, and radiomic features. The predictive performance of each model was evaluated through the receiver operating characteristic curve (ROC) and the area under the curve (AUC). The predictive performance of two radiologists (A and B) and our radiomic predictive model were further investigated in the test cohort to see if radiomic predictive model could improve radiologists' performance in prediction between pGGN-like AIS/MIA and IVA. Results: Among 322 nodules, 48 (14.9%) were AIS and 102 (31.7%) were MIA with 172 (53.4%) for IVA. Age, diameter, density, and nine meaningful radiomic features were selected for model building in the training cohort. Three predictive models showed good performance in prediction between pGGN-like AIS/MIA and IVA (AUC > 0.8, P < 0.05) in both training and test cohorts. The AUC values in the test cohort were 0.824 (95% CI, 0.723-0.924), 0.833 (95% CI, 0.733-0.934), and 0.848 (95% CI, 0.750-0.946) for conventional, radiomic, and combined models, respectively. The predictive accuracy was 73.44 and 59.38% for radiologist A and radiologist B in the test cohort and was improved dramatically to 79.69 and 75.00% with the aid of our radiomic predictive model. Conclusion: The predictive models built in our study showed good predictive power with good accuracy and sensitivity, which provided a non-invasive, convenient, economic, and repeatable way for the prediction between IVA and AIS/MIA representing as pGGNs. The radiomic predictive model outperformed two radiologists in predicting pGGN-like AIS/MIA and IVA, and could significantly improve the predictive performance of the two radiologists, especially radiologist B with less experience in medical imaging diagnosis. The selected radiomic features in our research did not provide more useful information to improve the combined predictive model's performance." @default.
- W3048160945 created "2020-08-13" @default.
- W3048160945 creator A5007677720 @default.
- W3048160945 creator A5014280061 @default.
- W3048160945 creator A5032043069 @default.
- W3048160945 creator A5032764121 @default.
- W3048160945 creator A5051420965 @default.
- W3048160945 creator A5061272718 @default.
- W3048160945 creator A5067167195 @default.
- W3048160945 creator A5071445293 @default.
- W3048160945 creator A5078843598 @default.
- W3048160945 creator A5085246509 @default.
- W3048160945 date "2020-08-11" @default.
- W3048160945 modified "2023-10-13" @default.
- W3048160945 title "Radiomic-Based Quantitative CT Analysis of Pure Ground-Glass Nodules to Predict the Invasiveness of Lung Adenocarcinoma" @default.
- W3048160945 cites W1444168786 @default.
- W3048160945 cites W1601442485 @default.
- W3048160945 cites W1978928671 @default.
- W3048160945 cites W2001551406 @default.
- W3048160945 cites W2005674904 @default.
- W3048160945 cites W2020330859 @default.
- W3048160945 cites W2026616100 @default.
- W3048160945 cites W2035781406 @default.
- W3048160945 cites W2041476766 @default.
- W3048160945 cites W2042571564 @default.
- W3048160945 cites W2044465660 @default.
- W3048160945 cites W2049674541 @default.
- W3048160945 cites W2068979002 @default.
- W3048160945 cites W2098117936 @default.
- W3048160945 cites W2103004421 @default.
- W3048160945 cites W2111667401 @default.
- W3048160945 cites W2112355135 @default.
- W3048160945 cites W2121237191 @default.
- W3048160945 cites W2125587165 @default.
- W3048160945 cites W2128739912 @default.
- W3048160945 cites W2153704901 @default.
- W3048160945 cites W2164022338 @default.
- W3048160945 cites W2251438188 @default.
- W3048160945 cites W2253150690 @default.
- W3048160945 cites W2282102622 @default.
- W3048160945 cites W2339467138 @default.
- W3048160945 cites W2512287236 @default.
- W3048160945 cites W2604575137 @default.
- W3048160945 cites W2619480050 @default.
- W3048160945 cites W2620325446 @default.
- W3048160945 cites W2727490504 @default.
- W3048160945 cites W2753870359 @default.
- W3048160945 cites W2766552454 @default.
- W3048160945 cites W2767128594 @default.
- W3048160945 cites W2769771400 @default.
- W3048160945 cites W2776442232 @default.
- W3048160945 cites W2793661135 @default.
- W3048160945 cites W2806191962 @default.
- W3048160945 cites W2921899076 @default.
- W3048160945 cites W2945903607 @default.
- W3048160945 cites W2946086971 @default.
- W3048160945 cites W3003475598 @default.
- W3048160945 cites W3010662565 @default.
- W3048160945 doi "https://doi.org/10.3389/fonc.2020.00872" @default.
- W3048160945 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7664516" @default.
- W3048160945 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33194775" @default.
- W3048160945 hasPublicationYear "2020" @default.
- W3048160945 type Work @default.
- W3048160945 sameAs 3048160945 @default.
- W3048160945 citedByCount "25" @default.
- W3048160945 countsByYear W30481609452020 @default.
- W3048160945 countsByYear W30481609452021 @default.
- W3048160945 countsByYear W30481609452022 @default.
- W3048160945 countsByYear W30481609452023 @default.
- W3048160945 crossrefType "journal-article" @default.
- W3048160945 hasAuthorship W3048160945A5007677720 @default.
- W3048160945 hasAuthorship W3048160945A5014280061 @default.
- W3048160945 hasAuthorship W3048160945A5032043069 @default.
- W3048160945 hasAuthorship W3048160945A5032764121 @default.
- W3048160945 hasAuthorship W3048160945A5051420965 @default.
- W3048160945 hasAuthorship W3048160945A5061272718 @default.
- W3048160945 hasAuthorship W3048160945A5067167195 @default.
- W3048160945 hasAuthorship W3048160945A5071445293 @default.
- W3048160945 hasAuthorship W3048160945A5078843598 @default.
- W3048160945 hasAuthorship W3048160945A5085246509 @default.
- W3048160945 hasBestOaLocation W30481609451 @default.
- W3048160945 hasConcept C121608353 @default.
- W3048160945 hasConcept C126322002 @default.
- W3048160945 hasConcept C126838900 @default.
- W3048160945 hasConcept C2777001051 @default.
- W3048160945 hasConcept C2778559731 @default.
- W3048160945 hasConcept C2781182431 @default.
- W3048160945 hasConcept C2989005 @default.
- W3048160945 hasConcept C58471807 @default.
- W3048160945 hasConcept C71924100 @default.
- W3048160945 hasConceptScore W3048160945C121608353 @default.
- W3048160945 hasConceptScore W3048160945C126322002 @default.
- W3048160945 hasConceptScore W3048160945C126838900 @default.
- W3048160945 hasConceptScore W3048160945C2777001051 @default.
- W3048160945 hasConceptScore W3048160945C2778559731 @default.
- W3048160945 hasConceptScore W3048160945C2781182431 @default.
- W3048160945 hasConceptScore W3048160945C2989005 @default.
- W3048160945 hasConceptScore W3048160945C58471807 @default.
- W3048160945 hasConceptScore W3048160945C71924100 @default.
- W3048160945 hasLocation W30481609451 @default.