Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048160986> ?p ?o ?g. }
- W3048160986 endingPage "100078" @default.
- W3048160986 startingPage "100078" @default.
- W3048160986 abstract "Lithium-ion capacitor is a hybrid electrochemical energy storage device which combines the merits of lithium-ion battery and electric double-layer capacitor. It is of great importance to monitor the real capacity to evaluate failures of lithium-ion capacitors. Remaining Useful Life (RUL), which is referred to remaining cycle number before reaching its End of Life (EOL) threshold, is a key part in the prognostics and health management and an important indicator of the depletion capacity of lithium-ion capacitor. In this paper, we propose a hybrid neural network which combine with the convolutional neural network and Bidirectional Long Short-Term Memory Network (Bi-LSTM), the data will be used to train this model. Finally, the verifications among different prediction horizons and other methods are discussed. According to the experimental and analysis results, the proposed approach has high reliability and prediction accuracy, which can be applied to battery monitoring and prognostics, as well as generalized to other prognostic applications." @default.
- W3048160986 created "2020-08-13" @default.
- W3048160986 creator A5000268363 @default.
- W3048160986 creator A5006721243 @default.
- W3048160986 creator A5008534055 @default.
- W3048160986 creator A5013349140 @default.
- W3048160986 creator A5027500048 @default.
- W3048160986 creator A5041694806 @default.
- W3048160986 creator A5064999906 @default.
- W3048160986 creator A5076988030 @default.
- W3048160986 creator A5077799061 @default.
- W3048160986 date "2020-08-01" @default.
- W3048160986 modified "2023-10-12" @default.
- W3048160986 title "Remaining useful life prediction based on denoising technique and deep neural network for lithium-ion capacitors" @default.
- W3048160986 cites W1015042224 @default.
- W3048160986 cites W119880549 @default.
- W3048160986 cites W1984354255 @default.
- W3048160986 cites W2021824097 @default.
- W3048160986 cites W2030503309 @default.
- W3048160986 cites W2064675550 @default.
- W3048160986 cites W2078279667 @default.
- W3048160986 cites W2086836495 @default.
- W3048160986 cites W2087978924 @default.
- W3048160986 cites W2109896502 @default.
- W3048160986 cites W2131774270 @default.
- W3048160986 cites W2139858245 @default.
- W3048160986 cites W2165344987 @default.
- W3048160986 cites W2286630851 @default.
- W3048160986 cites W2342265232 @default.
- W3048160986 cites W2594978851 @default.
- W3048160986 cites W2755467298 @default.
- W3048160986 cites W2767593291 @default.
- W3048160986 cites W2775051735 @default.
- W3048160986 cites W2792573670 @default.
- W3048160986 cites W2805330622 @default.
- W3048160986 cites W2808653156 @default.
- W3048160986 cites W2888981516 @default.
- W3048160986 cites W2895147187 @default.
- W3048160986 cites W2899792027 @default.
- W3048160986 cites W2902107055 @default.
- W3048160986 cites W2903220204 @default.
- W3048160986 cites W2905238323 @default.
- W3048160986 cites W2907460853 @default.
- W3048160986 cites W2909788014 @default.
- W3048160986 cites W2932010661 @default.
- W3048160986 cites W2934286352 @default.
- W3048160986 cites W2944920662 @default.
- W3048160986 cites W2957056027 @default.
- W3048160986 cites W2959749377 @default.
- W3048160986 cites W2961087414 @default.
- W3048160986 cites W2961350108 @default.
- W3048160986 cites W2966169983 @default.
- W3048160986 cites W3003911265 @default.
- W3048160986 cites W3016111263 @default.
- W3048160986 doi "https://doi.org/10.1016/j.etran.2020.100078" @default.
- W3048160986 hasPublicationYear "2020" @default.
- W3048160986 type Work @default.
- W3048160986 sameAs 3048160986 @default.
- W3048160986 citedByCount "48" @default.
- W3048160986 countsByYear W30481609862021 @default.
- W3048160986 countsByYear W30481609862022 @default.
- W3048160986 countsByYear W30481609862023 @default.
- W3048160986 crossrefType "journal-article" @default.
- W3048160986 hasAuthorship W3048160986A5000268363 @default.
- W3048160986 hasAuthorship W3048160986A5006721243 @default.
- W3048160986 hasAuthorship W3048160986A5008534055 @default.
- W3048160986 hasAuthorship W3048160986A5013349140 @default.
- W3048160986 hasAuthorship W3048160986A5027500048 @default.
- W3048160986 hasAuthorship W3048160986A5041694806 @default.
- W3048160986 hasAuthorship W3048160986A5064999906 @default.
- W3048160986 hasAuthorship W3048160986A5076988030 @default.
- W3048160986 hasAuthorship W3048160986A5077799061 @default.
- W3048160986 hasConcept C119599485 @default.
- W3048160986 hasConcept C121332964 @default.
- W3048160986 hasConcept C124101348 @default.
- W3048160986 hasConcept C127413603 @default.
- W3048160986 hasConcept C129364497 @default.
- W3048160986 hasConcept C154945302 @default.
- W3048160986 hasConcept C163258240 @default.
- W3048160986 hasConcept C165801399 @default.
- W3048160986 hasConcept C200601418 @default.
- W3048160986 hasConcept C41008148 @default.
- W3048160986 hasConcept C43214815 @default.
- W3048160986 hasConcept C50644808 @default.
- W3048160986 hasConcept C52192207 @default.
- W3048160986 hasConcept C555008776 @default.
- W3048160986 hasConcept C62520636 @default.
- W3048160986 hasConceptScore W3048160986C119599485 @default.
- W3048160986 hasConceptScore W3048160986C121332964 @default.
- W3048160986 hasConceptScore W3048160986C124101348 @default.
- W3048160986 hasConceptScore W3048160986C127413603 @default.
- W3048160986 hasConceptScore W3048160986C129364497 @default.
- W3048160986 hasConceptScore W3048160986C154945302 @default.
- W3048160986 hasConceptScore W3048160986C163258240 @default.
- W3048160986 hasConceptScore W3048160986C165801399 @default.
- W3048160986 hasConceptScore W3048160986C200601418 @default.
- W3048160986 hasConceptScore W3048160986C41008148 @default.
- W3048160986 hasConceptScore W3048160986C43214815 @default.