Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048166901> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W3048166901 abstract "It is a well-known fact that maintenance cost inside a company can be the largest part of operational expenses, second only to energy. Usually, replacing a component or equipment just before a breakdown occurs is the best way to minimize the maintenance cost. This is the main reason why a lot of companies are struggling in collecting data from equipment, and in finding ways to exploit these data for predictive purposes. In this paper we are going to explore multiple sensors' data extracted from an injection moulding machine, with the final aim of developing a Predictive Maintenance model tailored on the specific machine utilization. After the extraction of a training set, we implemented Machine Learning algorithms in order to find the best predictive model able to discern between correct functioning and border line functioning of the machine. We are going to describe the performance reached by the developed model and to show how it deals with completely new data used for testing the model." @default.
- W3048166901 created "2020-08-13" @default.
- W3048166901 creator A5013362245 @default.
- W3048166901 creator A5044094902 @default.
- W3048166901 creator A5058056480 @default.
- W3048166901 creator A5083611739 @default.
- W3048166901 date "2020-06-01" @default.
- W3048166901 modified "2023-10-17" @default.
- W3048166901 title "Using Plastic Injection Moulding Machine Process Parameters for Predictive Maintenance Purposes" @default.
- W3048166901 cites W1540327028 @default.
- W3048166901 cites W1964107122 @default.
- W3048166901 cites W1966170711 @default.
- W3048166901 cites W1986052273 @default.
- W3048166901 cites W2127103870 @default.
- W3048166901 cites W2168949990 @default.
- W3048166901 cites W2187877333 @default.
- W3048166901 cites W2193282862 @default.
- W3048166901 cites W2295939521 @default.
- W3048166901 cites W2300778507 @default.
- W3048166901 cites W2547187666 @default.
- W3048166901 cites W2597902973 @default.
- W3048166901 cites W2606983438 @default.
- W3048166901 cites W2610113868 @default.
- W3048166901 cites W2724349242 @default.
- W3048166901 cites W2897553892 @default.
- W3048166901 doi "https://doi.org/10.1109/iciem48762.2020.9160120" @default.
- W3048166901 hasPublicationYear "2020" @default.
- W3048166901 type Work @default.
- W3048166901 sameAs 3048166901 @default.
- W3048166901 citedByCount "5" @default.
- W3048166901 countsByYear W30481669012021 @default.
- W3048166901 countsByYear W30481669012022 @default.
- W3048166901 countsByYear W30481669012023 @default.
- W3048166901 crossrefType "proceedings-article" @default.
- W3048166901 hasAuthorship W3048166901A5013362245 @default.
- W3048166901 hasAuthorship W3048166901A5044094902 @default.
- W3048166901 hasAuthorship W3048166901A5058056480 @default.
- W3048166901 hasAuthorship W3048166901A5083611739 @default.
- W3048166901 hasConcept C111919701 @default.
- W3048166901 hasConcept C119857082 @default.
- W3048166901 hasConcept C121332964 @default.
- W3048166901 hasConcept C127413603 @default.
- W3048166901 hasConcept C165696696 @default.
- W3048166901 hasConcept C168167062 @default.
- W3048166901 hasConcept C177264268 @default.
- W3048166901 hasConcept C199360897 @default.
- W3048166901 hasConcept C200601418 @default.
- W3048166901 hasConcept C23725684 @default.
- W3048166901 hasConcept C24090081 @default.
- W3048166901 hasConcept C38652104 @default.
- W3048166901 hasConcept C41008148 @default.
- W3048166901 hasConcept C70452415 @default.
- W3048166901 hasConcept C97355855 @default.
- W3048166901 hasConcept C98045186 @default.
- W3048166901 hasConceptScore W3048166901C111919701 @default.
- W3048166901 hasConceptScore W3048166901C119857082 @default.
- W3048166901 hasConceptScore W3048166901C121332964 @default.
- W3048166901 hasConceptScore W3048166901C127413603 @default.
- W3048166901 hasConceptScore W3048166901C165696696 @default.
- W3048166901 hasConceptScore W3048166901C168167062 @default.
- W3048166901 hasConceptScore W3048166901C177264268 @default.
- W3048166901 hasConceptScore W3048166901C199360897 @default.
- W3048166901 hasConceptScore W3048166901C200601418 @default.
- W3048166901 hasConceptScore W3048166901C23725684 @default.
- W3048166901 hasConceptScore W3048166901C24090081 @default.
- W3048166901 hasConceptScore W3048166901C38652104 @default.
- W3048166901 hasConceptScore W3048166901C41008148 @default.
- W3048166901 hasConceptScore W3048166901C70452415 @default.
- W3048166901 hasConceptScore W3048166901C97355855 @default.
- W3048166901 hasConceptScore W3048166901C98045186 @default.
- W3048166901 hasLocation W30481669011 @default.
- W3048166901 hasOpenAccess W3048166901 @default.
- W3048166901 hasPrimaryLocation W30481669011 @default.
- W3048166901 hasRelatedWork W1964618263 @default.
- W3048166901 hasRelatedWork W1971749138 @default.
- W3048166901 hasRelatedWork W2464878053 @default.
- W3048166901 hasRelatedWork W2597821908 @default.
- W3048166901 hasRelatedWork W2970895679 @default.
- W3048166901 hasRelatedWork W3019581320 @default.
- W3048166901 hasRelatedWork W3091506466 @default.
- W3048166901 hasRelatedWork W3217027009 @default.
- W3048166901 hasRelatedWork W4210485126 @default.
- W3048166901 hasRelatedWork W4360585628 @default.
- W3048166901 isParatext "false" @default.
- W3048166901 isRetracted "false" @default.
- W3048166901 magId "3048166901" @default.
- W3048166901 workType "article" @default.