Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048167958> ?p ?o ?g. }
- W3048167958 endingPage "104710" @default.
- W3048167958 startingPage "104710" @default.
- W3048167958 abstract "Deep learning (DL) algorithms have received increased attention in various fields. In the field of geoscience, DL has been shown to be a powerful tool for mining complex, high-level, and non-linear geospatial data and for extracting previously unknown patterns related to geological processes. In this study, a deep variational autoencoder (VAE) network was used to extract features related to mineralization; and these features were then integrated as a anomaly map in support of mineral exploration based on geochemical exploration data, which consist of Cu, Pb, Mn, Zn and Fe2O3. Various experiments were conducted to determine the optimal parameters of the VAE. The structure of the VAE, in which the network depth and number of hidden units were 24–12-3-12-24, was built to recognize geochemical anomalies related to Fe polymetallic mineralization in the southwest Fujian Province, China. The geochemical anomalies recognized by the VAE show a close spatial correlation with known Fe polymetallic deposits. Meanwhile, the areas with high probability are located in or around the Yanshanian intrusions and the contact zones of the Carboniferous–Permian formation and Yanshanian intrusions. These results suggest that the anomalous areas identified by the VAE are meaningful for mineral exploration." @default.
- W3048167958 created "2020-08-13" @default.
- W3048167958 creator A5008183305 @default.
- W3048167958 creator A5031791103 @default.
- W3048167958 creator A5044147118 @default.
- W3048167958 date "2020-11-01" @default.
- W3048167958 modified "2023-10-11" @default.
- W3048167958 title "Recognition of geochemical anomalies using a deep variational autoencoder network" @default.
- W3048167958 cites W1967380063 @default.
- W3048167958 cites W1971954547 @default.
- W3048167958 cites W1985364022 @default.
- W3048167958 cites W1989232026 @default.
- W3048167958 cites W1997507409 @default.
- W3048167958 cites W2010006040 @default.
- W3048167958 cites W2025597990 @default.
- W3048167958 cites W2026992098 @default.
- W3048167958 cites W2029316659 @default.
- W3048167958 cites W2038393361 @default.
- W3048167958 cites W2048708177 @default.
- W3048167958 cites W2049220430 @default.
- W3048167958 cites W2058314706 @default.
- W3048167958 cites W2058392115 @default.
- W3048167958 cites W2067428207 @default.
- W3048167958 cites W2076526690 @default.
- W3048167958 cites W2078112764 @default.
- W3048167958 cites W2079270977 @default.
- W3048167958 cites W2085926688 @default.
- W3048167958 cites W2086465016 @default.
- W3048167958 cites W2086999348 @default.
- W3048167958 cites W2098397292 @default.
- W3048167958 cites W2100495367 @default.
- W3048167958 cites W2123772631 @default.
- W3048167958 cites W2158698691 @default.
- W3048167958 cites W2159469384 @default.
- W3048167958 cites W2195723163 @default.
- W3048167958 cites W2243193383 @default.
- W3048167958 cites W2335799536 @default.
- W3048167958 cites W2592141703 @default.
- W3048167958 cites W2598606761 @default.
- W3048167958 cites W2614041301 @default.
- W3048167958 cites W2615492166 @default.
- W3048167958 cites W2620372065 @default.
- W3048167958 cites W2767155774 @default.
- W3048167958 cites W2798828763 @default.
- W3048167958 cites W2915983067 @default.
- W3048167958 cites W2919115771 @default.
- W3048167958 cites W2920641855 @default.
- W3048167958 cites W2921482850 @default.
- W3048167958 cites W2940109304 @default.
- W3048167958 cites W2943733518 @default.
- W3048167958 cites W2943736627 @default.
- W3048167958 cites W2947060705 @default.
- W3048167958 cites W2991026093 @default.
- W3048167958 cites W2998600637 @default.
- W3048167958 cites W3016126888 @default.
- W3048167958 cites W3025212340 @default.
- W3048167958 cites W3037252916 @default.
- W3048167958 cites W349196091 @default.
- W3048167958 cites W598667868 @default.
- W3048167958 cites W71326613 @default.
- W3048167958 doi "https://doi.org/10.1016/j.apgeochem.2020.104710" @default.
- W3048167958 hasPublicationYear "2020" @default.
- W3048167958 type Work @default.
- W3048167958 sameAs 3048167958 @default.
- W3048167958 citedByCount "53" @default.
- W3048167958 countsByYear W30481679582021 @default.
- W3048167958 countsByYear W30481679582022 @default.
- W3048167958 countsByYear W30481679582023 @default.
- W3048167958 crossrefType "journal-article" @default.
- W3048167958 hasAuthorship W3048167958A5008183305 @default.
- W3048167958 hasAuthorship W3048167958A5031791103 @default.
- W3048167958 hasAuthorship W3048167958A5044147118 @default.
- W3048167958 hasConcept C101738243 @default.
- W3048167958 hasConcept C108583219 @default.
- W3048167958 hasConcept C109007969 @default.
- W3048167958 hasConcept C111696902 @default.
- W3048167958 hasConcept C127313418 @default.
- W3048167958 hasConcept C149918038 @default.
- W3048167958 hasConcept C151730666 @default.
- W3048167958 hasConcept C154945302 @default.
- W3048167958 hasConcept C159390177 @default.
- W3048167958 hasConcept C159750122 @default.
- W3048167958 hasConcept C16674752 @default.
- W3048167958 hasConcept C17409809 @default.
- W3048167958 hasConcept C199289684 @default.
- W3048167958 hasConcept C41008148 @default.
- W3048167958 hasConcept C62649853 @default.
- W3048167958 hasConcept C66264921 @default.
- W3048167958 hasConcept C83365034 @default.
- W3048167958 hasConcept C9770341 @default.
- W3048167958 hasConceptScore W3048167958C101738243 @default.
- W3048167958 hasConceptScore W3048167958C108583219 @default.
- W3048167958 hasConceptScore W3048167958C109007969 @default.
- W3048167958 hasConceptScore W3048167958C111696902 @default.
- W3048167958 hasConceptScore W3048167958C127313418 @default.
- W3048167958 hasConceptScore W3048167958C149918038 @default.
- W3048167958 hasConceptScore W3048167958C151730666 @default.
- W3048167958 hasConceptScore W3048167958C154945302 @default.