Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048171083> ?p ?o ?g. }
- W3048171083 endingPage "1518" @default.
- W3048171083 startingPage "1501" @default.
- W3048171083 abstract "Abstract This paper investigates permutation flow shop scheduling (PFSS) problems under the effects of position-dependent learning and linear deterioration. In a PFSS problem, there are n jobs and m machines in series. Jobs are separated into operations on $$ m $$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mi>m</mml:mi> </mml:math> different machines in series, and jobs have to follow the same machine order with the same sequence. The PFSS problem under the effects of learning and deterioration is introduced with a mixed-integer nonlinear programming model. The time requirement for solving large-scale problems type of PFSS problem is exceedingly high. Therefore, well-known metaheuristic methods for the PFSS problem without learning and deterioration effects such as iterated greedy algorithms and discrete differential evolution algorithm are adapted for the problem with learning and deterioration effects in order to find a faster and near-optimal or optimal solution for the problem. Furthermore, this paper proposes a hybrid solution algorithm that is called population-based Tabu search algorithm (TS POP ) with evolutionary strategies such as crossover and mutation. The search algorithm is built on the basic structure of Tabu search and it searches for the best candidate from a solution population instead of improving the current best candidate at each iteration. Furthermore, the performances of these methods in view of solution quality are discussed in this paper by using test problems for 20, 50, and 100 jobs with 5, 10, 20 machines. Experimental results show that the proposed TS POP algorithm outperforms the other existing algorithms in view of solution quality." @default.
- W3048171083 created "2020-08-13" @default.
- W3048171083 creator A5048761617 @default.
- W3048171083 date "2020-08-07" @default.
- W3048171083 modified "2023-10-16" @default.
- W3048171083 title "Population-based Tabu search with evolutionary strategies for permutation flow shop scheduling problems under effects of position-dependent learning and linear deterioration" @default.
- W3048171083 cites W133218123 @default.
- W3048171083 cites W1488422606 @default.
- W3048171083 cites W18845368 @default.
- W3048171083 cites W1964734347 @default.
- W3048171083 cites W1968863410 @default.
- W3048171083 cites W1974960605 @default.
- W3048171083 cites W1975172421 @default.
- W3048171083 cites W1977133017 @default.
- W3048171083 cites W1980014555 @default.
- W3048171083 cites W1980880644 @default.
- W3048171083 cites W1983523940 @default.
- W3048171083 cites W1983974888 @default.
- W3048171083 cites W1985351347 @default.
- W3048171083 cites W1988811335 @default.
- W3048171083 cites W1992015577 @default.
- W3048171083 cites W1995117679 @default.
- W3048171083 cites W1995840220 @default.
- W3048171083 cites W2000541569 @default.
- W3048171083 cites W2001664299 @default.
- W3048171083 cites W2006751452 @default.
- W3048171083 cites W2014072442 @default.
- W3048171083 cites W2014868958 @default.
- W3048171083 cites W2015178471 @default.
- W3048171083 cites W2017902784 @default.
- W3048171083 cites W2018736540 @default.
- W3048171083 cites W2020600789 @default.
- W3048171083 cites W2026238296 @default.
- W3048171083 cites W2029501112 @default.
- W3048171083 cites W2031144267 @default.
- W3048171083 cites W2031463556 @default.
- W3048171083 cites W2034076959 @default.
- W3048171083 cites W2034174519 @default.
- W3048171083 cites W2038757212 @default.
- W3048171083 cites W2044347520 @default.
- W3048171083 cites W2048240704 @default.
- W3048171083 cites W2050360670 @default.
- W3048171083 cites W2052516622 @default.
- W3048171083 cites W2058944795 @default.
- W3048171083 cites W2060535482 @default.
- W3048171083 cites W2065706108 @default.
- W3048171083 cites W2065768294 @default.
- W3048171083 cites W2069933822 @default.
- W3048171083 cites W2070245112 @default.
- W3048171083 cites W2079661120 @default.
- W3048171083 cites W2083198448 @default.
- W3048171083 cites W2086738348 @default.
- W3048171083 cites W2093278060 @default.
- W3048171083 cites W2097316707 @default.
- W3048171083 cites W2104670598 @default.
- W3048171083 cites W2111060121 @default.
- W3048171083 cites W2115917332 @default.
- W3048171083 cites W2125827607 @default.
- W3048171083 cites W2131446946 @default.
- W3048171083 cites W2138813758 @default.
- W3048171083 cites W2140948200 @default.
- W3048171083 cites W2145296168 @default.
- W3048171083 cites W2156391157 @default.
- W3048171083 cites W2167685483 @default.
- W3048171083 cites W2190276544 @default.
- W3048171083 cites W2214705186 @default.
- W3048171083 cites W2232856748 @default.
- W3048171083 cites W2260286117 @default.
- W3048171083 cites W2283909118 @default.
- W3048171083 cites W2342309849 @default.
- W3048171083 cites W2466042049 @default.
- W3048171083 cites W2530577942 @default.
- W3048171083 cites W2556358422 @default.
- W3048171083 cites W2564072466 @default.
- W3048171083 cites W2759257777 @default.
- W3048171083 cites W2765813590 @default.
- W3048171083 cites W2799290350 @default.
- W3048171083 cites W2884652221 @default.
- W3048171083 cites W2897754008 @default.
- W3048171083 cites W2898403761 @default.
- W3048171083 cites W2922759273 @default.
- W3048171083 cites W2945276842 @default.
- W3048171083 cites W2967278017 @default.
- W3048171083 cites W2976893411 @default.
- W3048171083 cites W3141653773 @default.
- W3048171083 cites W4246598646 @default.
- W3048171083 cites W4247518366 @default.
- W3048171083 cites W807426715 @default.
- W3048171083 doi "https://doi.org/10.1007/s00500-020-05234-7" @default.
- W3048171083 hasPublicationYear "2020" @default.
- W3048171083 type Work @default.
- W3048171083 sameAs 3048171083 @default.
- W3048171083 citedByCount "17" @default.
- W3048171083 countsByYear W30481710832021 @default.
- W3048171083 countsByYear W30481710832022 @default.
- W3048171083 countsByYear W30481710832023 @default.
- W3048171083 crossrefType "journal-article" @default.
- W3048171083 hasAuthorship W3048171083A5048761617 @default.