Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048173824> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W3048173824 abstract "Skin cancer is a huge issue which gets neglected very often. Sometimes the human eye is unable to precisely detect diseases from imaging data, in cases of doctor's manual inspection. In this age, we see the rise of use of deep learning methods in our daily life problem solving. Therefore, we develop an automated computerised system for detecting skin diseases using deep neural network algorithms. In the proposed model, we have used several neural network algorithms and analyse their performances to detect five major skin diseases and Figure out the best performing algorithm in terms of accuracy. CNN and by using Keras Sequential API, we have structured a new model to gainan accuracy of around 80%. Later, for comparison and also to increase accuracy we have used architectures that use pre-trained data. These transfer learning model includes VGG11, RESNET50 and DENSENET121. Among the algorithms used in the proposed models, resnet architecture achieve highest accuracy of 90%." @default.
- W3048173824 created "2020-08-13" @default.
- W3048173824 creator A5005540285 @default.
- W3048173824 creator A5027691453 @default.
- W3048173824 creator A5044551446 @default.
- W3048173824 creator A5044888333 @default.
- W3048173824 creator A5044981870 @default.
- W3048173824 creator A5051981813 @default.
- W3048173824 date "2019-12-01" @default.
- W3048173824 modified "2023-10-10" @default.
- W3048173824 title "Detection Of Skin Cancer Using Deep Neural Networks" @default.
- W3048173824 cites W1550605325 @default.
- W3048173824 cites W1761621746 @default.
- W3048173824 cites W1969215648 @default.
- W3048173824 cites W1971230257 @default.
- W3048173824 cites W1974771956 @default.
- W3048173824 cites W2008902413 @default.
- W3048173824 cites W2023191766 @default.
- W3048173824 cites W2043269025 @default.
- W3048173824 cites W2043823994 @default.
- W3048173824 cites W2055123697 @default.
- W3048173824 cites W2065829097 @default.
- W3048173824 cites W2068122927 @default.
- W3048173824 cites W2076491552 @default.
- W3048173824 cites W2102121645 @default.
- W3048173824 cites W2136040303 @default.
- W3048173824 cites W2152188843 @default.
- W3048173824 cites W2152671973 @default.
- W3048173824 cites W2164273268 @default.
- W3048173824 cites W2169415433 @default.
- W3048173824 cites W2332249160 @default.
- W3048173824 cites W2038048279 @default.
- W3048173824 doi "https://doi.org/10.1109/csde48274.2019.9162400" @default.
- W3048173824 hasPublicationYear "2019" @default.
- W3048173824 type Work @default.
- W3048173824 sameAs 3048173824 @default.
- W3048173824 citedByCount "13" @default.
- W3048173824 countsByYear W30481738242020 @default.
- W3048173824 countsByYear W30481738242021 @default.
- W3048173824 countsByYear W30481738242022 @default.
- W3048173824 countsByYear W30481738242023 @default.
- W3048173824 crossrefType "proceedings-article" @default.
- W3048173824 hasAuthorship W3048173824A5005540285 @default.
- W3048173824 hasAuthorship W3048173824A5027691453 @default.
- W3048173824 hasAuthorship W3048173824A5044551446 @default.
- W3048173824 hasAuthorship W3048173824A5044888333 @default.
- W3048173824 hasAuthorship W3048173824A5044981870 @default.
- W3048173824 hasAuthorship W3048173824A5051981813 @default.
- W3048173824 hasConcept C108583219 @default.
- W3048173824 hasConcept C119857082 @default.
- W3048173824 hasConcept C121608353 @default.
- W3048173824 hasConcept C123657996 @default.
- W3048173824 hasConcept C126322002 @default.
- W3048173824 hasConcept C142362112 @default.
- W3048173824 hasConcept C150899416 @default.
- W3048173824 hasConcept C153180895 @default.
- W3048173824 hasConcept C153349607 @default.
- W3048173824 hasConcept C154945302 @default.
- W3048173824 hasConcept C2777789703 @default.
- W3048173824 hasConcept C2944601119 @default.
- W3048173824 hasConcept C2984842247 @default.
- W3048173824 hasConcept C41008148 @default.
- W3048173824 hasConcept C50644808 @default.
- W3048173824 hasConcept C71924100 @default.
- W3048173824 hasConceptScore W3048173824C108583219 @default.
- W3048173824 hasConceptScore W3048173824C119857082 @default.
- W3048173824 hasConceptScore W3048173824C121608353 @default.
- W3048173824 hasConceptScore W3048173824C123657996 @default.
- W3048173824 hasConceptScore W3048173824C126322002 @default.
- W3048173824 hasConceptScore W3048173824C142362112 @default.
- W3048173824 hasConceptScore W3048173824C150899416 @default.
- W3048173824 hasConceptScore W3048173824C153180895 @default.
- W3048173824 hasConceptScore W3048173824C153349607 @default.
- W3048173824 hasConceptScore W3048173824C154945302 @default.
- W3048173824 hasConceptScore W3048173824C2777789703 @default.
- W3048173824 hasConceptScore W3048173824C2944601119 @default.
- W3048173824 hasConceptScore W3048173824C2984842247 @default.
- W3048173824 hasConceptScore W3048173824C41008148 @default.
- W3048173824 hasConceptScore W3048173824C50644808 @default.
- W3048173824 hasConceptScore W3048173824C71924100 @default.
- W3048173824 hasLocation W30481738241 @default.
- W3048173824 hasOpenAccess W3048173824 @default.
- W3048173824 hasPrimaryLocation W30481738241 @default.
- W3048173824 hasRelatedWork W2799384463 @default.
- W3048173824 hasRelatedWork W2951211570 @default.
- W3048173824 hasRelatedWork W3023427754 @default.
- W3048173824 hasRelatedWork W3131673289 @default.
- W3048173824 hasRelatedWork W3167935049 @default.
- W3048173824 hasRelatedWork W3192840557 @default.
- W3048173824 hasRelatedWork W4205117943 @default.
- W3048173824 hasRelatedWork W4206357785 @default.
- W3048173824 hasRelatedWork W4281381188 @default.
- W3048173824 hasRelatedWork W4375928479 @default.
- W3048173824 isParatext "false" @default.
- W3048173824 isRetracted "false" @default.
- W3048173824 magId "3048173824" @default.
- W3048173824 workType "article" @default.