Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048174154> ?p ?o ?g. }
Showing items 1 to 59 of
59
with 100 items per page.
- W3048174154 abstract "In 1980, Akiyama, Exoo and Harary posited the Linear Arboricity Conjecture which states that any graph $G$ of maximum degree $Delta$ can be decomposed into at most $leftlceil frac{Delta}{2}rightrceil$ linear forests. (A forest is linear if all of its components are paths.) In 1988, Alon proved the conjecture holds asymptotically. The current best bound is due to Ferber, Fox and Jain from 2020 who showed that $frac{Delta}{2}+ O(Delta^{.661})$ suffices for large enough $Delta$. Here, we show that $G$ admits a decomposition into at most $frac{Delta}{2}+ 3sqrt{Delta} log^4 Delta$ linear forests provided $Delta$ is large enough. Moreover, our result also holds in the more general list setting, where edges have (possibly different) sets of permissible linear forests. Thus our bound also holds for the List Linear Arboricity Conjecture which was only recently shown to hold asymptotically by Kim and the second author. Indeed, our proof method ties together the Linear Arboricity Conjecture and the well-known List Colouring Conjecture; consequently, our error term for the Linear Arboricity Conjecture matches the best known error-term for the List Colouring Conjecture due to Molloy and Reed from 2000. This follows as we make two copies of every colour and then seek a proper edge colouring where we avoid bicoloured cycles between a colour and its copy; we achieve this via a clever modification of the nibble method." @default.
- W3048174154 created "2020-08-13" @default.
- W3048174154 creator A5073051457 @default.
- W3048174154 creator A5088648228 @default.
- W3048174154 date "2020-08-10" @default.
- W3048174154 modified "2023-09-23" @default.
- W3048174154 title "An Improved Bound for the Linear Arboricity Conjecture" @default.
- W3048174154 cites W2024769658 @default.
- W3048174154 cites W2068871408 @default.
- W3048174154 cites W2087513522 @default.
- W3048174154 cites W2087518343 @default.
- W3048174154 cites W2731891712 @default.
- W3048174154 cites W2772245851 @default.
- W3048174154 cites W2972575371 @default.
- W3048174154 cites W3297276 @default.
- W3048174154 doi "https://doi.org/10.48550/arxiv.2008.04251" @default.
- W3048174154 hasPublicationYear "2020" @default.
- W3048174154 type Work @default.
- W3048174154 sameAs 3048174154 @default.
- W3048174154 citedByCount "0" @default.
- W3048174154 crossrefType "posted-content" @default.
- W3048174154 hasAuthorship W3048174154A5073051457 @default.
- W3048174154 hasAuthorship W3048174154A5088648228 @default.
- W3048174154 hasBestOaLocation W30481741541 @default.
- W3048174154 hasConcept C101837359 @default.
- W3048174154 hasConcept C114614502 @default.
- W3048174154 hasConcept C118615104 @default.
- W3048174154 hasConcept C132525143 @default.
- W3048174154 hasConcept C134306372 @default.
- W3048174154 hasConcept C2780990831 @default.
- W3048174154 hasConcept C33923547 @default.
- W3048174154 hasConcept C77553402 @default.
- W3048174154 hasConcept C83204008 @default.
- W3048174154 hasConceptScore W3048174154C101837359 @default.
- W3048174154 hasConceptScore W3048174154C114614502 @default.
- W3048174154 hasConceptScore W3048174154C118615104 @default.
- W3048174154 hasConceptScore W3048174154C132525143 @default.
- W3048174154 hasConceptScore W3048174154C134306372 @default.
- W3048174154 hasConceptScore W3048174154C2780990831 @default.
- W3048174154 hasConceptScore W3048174154C33923547 @default.
- W3048174154 hasConceptScore W3048174154C77553402 @default.
- W3048174154 hasConceptScore W3048174154C83204008 @default.
- W3048174154 hasLocation W30481741541 @default.
- W3048174154 hasOpenAccess W3048174154 @default.
- W3048174154 hasPrimaryLocation W30481741541 @default.
- W3048174154 hasRelatedWork W2002256912 @default.
- W3048174154 hasRelatedWork W2077251859 @default.
- W3048174154 hasRelatedWork W2536844146 @default.
- W3048174154 hasRelatedWork W2899640319 @default.
- W3048174154 hasRelatedWork W3097892397 @default.
- W3048174154 hasRelatedWork W3109000230 @default.
- W3048174154 hasRelatedWork W3140978621 @default.
- W3048174154 hasRelatedWork W384763036 @default.
- W3048174154 hasRelatedWork W4287687190 @default.
- W3048174154 hasRelatedWork W4292001207 @default.
- W3048174154 isParatext "false" @default.
- W3048174154 isRetracted "false" @default.
- W3048174154 magId "3048174154" @default.
- W3048174154 workType "article" @default.