Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048180163> ?p ?o ?g. }
- W3048180163 endingPage "4413" @default.
- W3048180163 startingPage "4413" @default.
- W3048180163 abstract "Due to the spectral complexity and high dimensionality of hyperspectral images (HSIs), the processing of HSIs is susceptible to the curse of dimensionality. In addition, the classification results of ground truth are not ideal. To overcome the problem of the curse of dimensionality and improve classification accuracy, an improved spatial–spectral weight manifold embedding (ISS-WME) algorithm, which is based on hyperspectral data with their own manifold structure and local neighbors, is proposed in this study. The manifold structure was constructed using the structural weight matrix and the distance weight matrix. The structural weight matrix was composed of within-class and between-class coefficient representation matrices. These matrices were obtained by using the collaborative representation method. Furthermore, the distance weight matrix integrated the spatial and spectral information of HSIs. The ISS-WME algorithm describes the whole structure of the data by the weight matrix constructed by combining the within-class and between-class matrices and the spatial–spectral information of HSIs, and the nearest neighbor samples of the data are retained without changing when embedding to the low-dimensional space. To verify the classification effect of the ISS-WME algorithm, three classical data sets, namely Indian Pines, Pavia University, and Salinas scene, were subjected to experiments for this paper. Six methods of dimensionality reduction (DR) were used for comparison experiments using different classifiers such as k-nearest neighbor (KNN) and support vector machine (SVM). The experimental results show that the ISS-WME algorithm can represent the HSI structure better than other methods, and effectively improves the classification accuracy of HSIs." @default.
- W3048180163 created "2020-08-13" @default.
- W3048180163 creator A5050563694 @default.
- W3048180163 creator A5052056602 @default.
- W3048180163 creator A5057241068 @default.
- W3048180163 creator A5063321667 @default.
- W3048180163 creator A5068081929 @default.
- W3048180163 date "2020-08-07" @default.
- W3048180163 modified "2023-09-27" @default.
- W3048180163 title "Dimensionality Reduction of Hyperspectral Images Based on Improved Spatial–Spectral Weight Manifold Embedding" @default.
- W3048180163 cites W1979730959 @default.
- W3048180163 cites W1992738091 @default.
- W3048180163 cites W1995515053 @default.
- W3048180163 cites W2001141328 @default.
- W3048180163 cites W2019188302 @default.
- W3048180163 cites W2053186076 @default.
- W3048180163 cites W2089468765 @default.
- W3048180163 cites W2149224850 @default.
- W3048180163 cites W2190646811 @default.
- W3048180163 cites W2512139786 @default.
- W3048180163 cites W2513449575 @default.
- W3048180163 cites W2588117332 @default.
- W3048180163 cites W2754507318 @default.
- W3048180163 cites W2803563329 @default.
- W3048180163 cites W2887596409 @default.
- W3048180163 cites W2899874256 @default.
- W3048180163 cites W2900100330 @default.
- W3048180163 cites W2900521698 @default.
- W3048180163 cites W2907943085 @default.
- W3048180163 cites W2914981757 @default.
- W3048180163 cites W2921390441 @default.
- W3048180163 cites W2942599307 @default.
- W3048180163 cites W2947355197 @default.
- W3048180163 cites W2951885307 @default.
- W3048180163 doi "https://doi.org/10.3390/s20164413" @default.
- W3048180163 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7472477" @default.
- W3048180163 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32784692" @default.
- W3048180163 hasPublicationYear "2020" @default.
- W3048180163 type Work @default.
- W3048180163 sameAs 3048180163 @default.
- W3048180163 citedByCount "9" @default.
- W3048180163 countsByYear W30481801632020 @default.
- W3048180163 countsByYear W30481801632021 @default.
- W3048180163 countsByYear W30481801632022 @default.
- W3048180163 countsByYear W30481801632023 @default.
- W3048180163 crossrefType "journal-article" @default.
- W3048180163 hasAuthorship W3048180163A5050563694 @default.
- W3048180163 hasAuthorship W3048180163A5052056602 @default.
- W3048180163 hasAuthorship W3048180163A5057241068 @default.
- W3048180163 hasAuthorship W3048180163A5063321667 @default.
- W3048180163 hasAuthorship W3048180163A5068081929 @default.
- W3048180163 hasBestOaLocation W30481801631 @default.
- W3048180163 hasConcept C106487976 @default.
- W3048180163 hasConcept C111030470 @default.
- W3048180163 hasConcept C113238511 @default.
- W3048180163 hasConcept C11413529 @default.
- W3048180163 hasConcept C12267149 @default.
- W3048180163 hasConcept C127413603 @default.
- W3048180163 hasConcept C151876577 @default.
- W3048180163 hasConcept C153180895 @default.
- W3048180163 hasConcept C154945302 @default.
- W3048180163 hasConcept C159078339 @default.
- W3048180163 hasConcept C159985019 @default.
- W3048180163 hasConcept C17744445 @default.
- W3048180163 hasConcept C192562407 @default.
- W3048180163 hasConcept C199539241 @default.
- W3048180163 hasConcept C27438332 @default.
- W3048180163 hasConcept C2776359362 @default.
- W3048180163 hasConcept C33923547 @default.
- W3048180163 hasConcept C41008148 @default.
- W3048180163 hasConcept C41608201 @default.
- W3048180163 hasConcept C529865628 @default.
- W3048180163 hasConcept C70518039 @default.
- W3048180163 hasConcept C78519656 @default.
- W3048180163 hasConcept C94625758 @default.
- W3048180163 hasConceptScore W3048180163C106487976 @default.
- W3048180163 hasConceptScore W3048180163C111030470 @default.
- W3048180163 hasConceptScore W3048180163C113238511 @default.
- W3048180163 hasConceptScore W3048180163C11413529 @default.
- W3048180163 hasConceptScore W3048180163C12267149 @default.
- W3048180163 hasConceptScore W3048180163C127413603 @default.
- W3048180163 hasConceptScore W3048180163C151876577 @default.
- W3048180163 hasConceptScore W3048180163C153180895 @default.
- W3048180163 hasConceptScore W3048180163C154945302 @default.
- W3048180163 hasConceptScore W3048180163C159078339 @default.
- W3048180163 hasConceptScore W3048180163C159985019 @default.
- W3048180163 hasConceptScore W3048180163C17744445 @default.
- W3048180163 hasConceptScore W3048180163C192562407 @default.
- W3048180163 hasConceptScore W3048180163C199539241 @default.
- W3048180163 hasConceptScore W3048180163C27438332 @default.
- W3048180163 hasConceptScore W3048180163C2776359362 @default.
- W3048180163 hasConceptScore W3048180163C33923547 @default.
- W3048180163 hasConceptScore W3048180163C41008148 @default.
- W3048180163 hasConceptScore W3048180163C41608201 @default.
- W3048180163 hasConceptScore W3048180163C529865628 @default.
- W3048180163 hasConceptScore W3048180163C70518039 @default.
- W3048180163 hasConceptScore W3048180163C78519656 @default.
- W3048180163 hasConceptScore W3048180163C94625758 @default.