Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048192062> ?p ?o ?g. }
- W3048192062 endingPage "3457" @default.
- W3048192062 startingPage "3444" @default.
- W3048192062 abstract "In this article, we consider the problem of load balancing (LB), but, unlike the approaches that have been proposed earlier, we attempt to resolve the problem in a fair manner (or rather, it would probably be more appropriate to describe it as an ϵ-fair manner because, although the LB can, probably, never be totally fair, we achieve this by being “as close to fair as possible”). The solution that we propose invokes a novel stochastic learning automaton (LA) scheme, so as to attain a distribution of the load to a number of nodes, where the performance level at the different nodes is approximately equal and each user experiences approximately the same Quality of the Service (QoS) irrespective of which node that he/she is connected to. Since the load is dynamically varying, static resource allocation schemes are doomed to underperform. This is further relevant in cloud environments, where we need dynamic approaches because the available resources are unpredictable (or rather, uncertain) by virtue of the shared nature of the resource pool. Furthermore, we prove here that there is a coupling involving LA's probabilities and the dynamics of the rewards themselves, which renders the environments to be nonstationary. This leads to the emergence of the so-called property of “stochastic diminishing rewards.” Our newly proposed novel LA algorithm ϵ-optimally solves the problem, and this is done by resorting to a two-time-scale-based stochastic learning paradigm. As far as we know, the results presented here are of a pioneering sort, and we are unaware of any comparable results." @default.
- W3048192062 created "2020-08-13" @default.
- W3048192062 creator A5001144517 @default.
- W3048192062 creator A5022547283 @default.
- W3048192062 creator A5032770006 @default.
- W3048192062 creator A5055634885 @default.
- W3048192062 date "2021-08-01" @default.
- W3048192062 modified "2023-10-16" @default.
- W3048192062 title "Achieving Fair Load Balancing by Invoking a Learning Automata-Based Two-Time-Scale Separation Paradigm" @default.
- W3048192062 cites W1568229137 @default.
- W3048192062 cites W1927990122 @default.
- W3048192062 cites W1964796204 @default.
- W3048192062 cites W1969754425 @default.
- W3048192062 cites W1972503266 @default.
- W3048192062 cites W2011586157 @default.
- W3048192062 cites W2013149234 @default.
- W3048192062 cites W2032695392 @default.
- W3048192062 cites W2033076457 @default.
- W3048192062 cites W2057076395 @default.
- W3048192062 cites W2071428865 @default.
- W3048192062 cites W2074803239 @default.
- W3048192062 cites W2098132613 @default.
- W3048192062 cites W2101130101 @default.
- W3048192062 cites W2103155126 @default.
- W3048192062 cites W2111038936 @default.
- W3048192062 cites W2111371453 @default.
- W3048192062 cites W2117702591 @default.
- W3048192062 cites W2131906734 @default.
- W3048192062 cites W2132522159 @default.
- W3048192062 cites W2138041254 @default.
- W3048192062 cites W2158832545 @default.
- W3048192062 cites W2162973639 @default.
- W3048192062 cites W2164636053 @default.
- W3048192062 cites W2270285425 @default.
- W3048192062 cites W2273741982 @default.
- W3048192062 cites W2327828747 @default.
- W3048192062 cites W2399041095 @default.
- W3048192062 cites W2510878525 @default.
- W3048192062 cites W2604764284 @default.
- W3048192062 cites W2746465276 @default.
- W3048192062 cites W2763398542 @default.
- W3048192062 cites W2809498753 @default.
- W3048192062 cites W2809760970 @default.
- W3048192062 cites W2914169461 @default.
- W3048192062 cites W2937214493 @default.
- W3048192062 cites W2946762441 @default.
- W3048192062 cites W2963026732 @default.
- W3048192062 cites W7103816 @default.
- W3048192062 doi "https://doi.org/10.1109/tnnls.2020.3010888" @default.
- W3048192062 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32755870" @default.
- W3048192062 hasPublicationYear "2021" @default.
- W3048192062 type Work @default.
- W3048192062 sameAs 3048192062 @default.
- W3048192062 citedByCount "3" @default.
- W3048192062 countsByYear W30481920622021 @default.
- W3048192062 countsByYear W30481920622023 @default.
- W3048192062 crossrefType "journal-article" @default.
- W3048192062 hasAuthorship W3048192062A5001144517 @default.
- W3048192062 hasAuthorship W3048192062A5022547283 @default.
- W3048192062 hasAuthorship W3048192062A5032770006 @default.
- W3048192062 hasAuthorship W3048192062A5055634885 @default.
- W3048192062 hasBestOaLocation W30481920622 @default.
- W3048192062 hasConcept C111472728 @default.
- W3048192062 hasConcept C120314980 @default.
- W3048192062 hasConcept C121332964 @default.
- W3048192062 hasConcept C126255220 @default.
- W3048192062 hasConcept C127413603 @default.
- W3048192062 hasConcept C131584629 @default.
- W3048192062 hasConcept C138885662 @default.
- W3048192062 hasConcept C138959212 @default.
- W3048192062 hasConcept C187691185 @default.
- W3048192062 hasConcept C206345919 @default.
- W3048192062 hasConcept C23123220 @default.
- W3048192062 hasConcept C2524010 @default.
- W3048192062 hasConcept C2778755073 @default.
- W3048192062 hasConcept C2779530757 @default.
- W3048192062 hasConcept C31258907 @default.
- W3048192062 hasConcept C33923547 @default.
- W3048192062 hasConcept C41008148 @default.
- W3048192062 hasConcept C5119721 @default.
- W3048192062 hasConcept C62520636 @default.
- W3048192062 hasConcept C62611344 @default.
- W3048192062 hasConcept C66938386 @default.
- W3048192062 hasConcept C78519656 @default.
- W3048192062 hasConcept C80444323 @default.
- W3048192062 hasConcept C88548561 @default.
- W3048192062 hasConceptScore W3048192062C111472728 @default.
- W3048192062 hasConceptScore W3048192062C120314980 @default.
- W3048192062 hasConceptScore W3048192062C121332964 @default.
- W3048192062 hasConceptScore W3048192062C126255220 @default.
- W3048192062 hasConceptScore W3048192062C127413603 @default.
- W3048192062 hasConceptScore W3048192062C131584629 @default.
- W3048192062 hasConceptScore W3048192062C138885662 @default.
- W3048192062 hasConceptScore W3048192062C138959212 @default.
- W3048192062 hasConceptScore W3048192062C187691185 @default.
- W3048192062 hasConceptScore W3048192062C206345919 @default.
- W3048192062 hasConceptScore W3048192062C23123220 @default.
- W3048192062 hasConceptScore W3048192062C2524010 @default.