Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048193796> ?p ?o ?g. }
- W3048193796 endingPage "107731" @default.
- W3048193796 startingPage "107731" @default.
- W3048193796 abstract "Distributed adaptive learning algorithms have played a critical role in signal processing and parameter estimation over networks. Most existing algorithms are based on the mean-square error (MSE) criterion, and they can achieve desirable performance when the noise is modeled as Gaussian. However, the performance of MSE-based algorithms may degrade dramatically with the impulsive noise. Therefore, the aim of this paper is to present a diffusion algorithm, named generalized correntropy-based logarithmic difference (d-GCLD) algorithm, for distributed estimation that incorporates robustness to wireless sensor networks (WSNs). By combining the logarithm operation and the correntropy criterion as the loss function, the proposed algorithm is robust to impulsive noise and achieves satisfactory performance in various situations. In addition, the stability problem is studied theoretically. Experimental results are given to demonstrate the validity of the new algorithm in different scenarios." @default.
- W3048193796 created "2020-08-13" @default.
- W3048193796 creator A5021979312 @default.
- W3048193796 creator A5043202934 @default.
- W3048193796 creator A5051806594 @default.
- W3048193796 creator A5055207211 @default.
- W3048193796 creator A5075312592 @default.
- W3048193796 date "2020-12-01" @default.
- W3048193796 modified "2023-09-25" @default.
- W3048193796 title "Robust distributed estimation based on a generalized correntropy logarithmic difference algorithm over wireless sensor networks" @default.
- W3048193796 cites W1971942712 @default.
- W3048193796 cites W1980907873 @default.
- W3048193796 cites W1999225362 @default.
- W3048193796 cites W2007208291 @default.
- W3048193796 cites W2024307985 @default.
- W3048193796 cites W2029080014 @default.
- W3048193796 cites W2052199757 @default.
- W3048193796 cites W2074796812 @default.
- W3048193796 cites W2080522017 @default.
- W3048193796 cites W2106251335 @default.
- W3048193796 cites W2117450598 @default.
- W3048193796 cites W2119434824 @default.
- W3048193796 cites W2121820607 @default.
- W3048193796 cites W2130403046 @default.
- W3048193796 cites W2130442323 @default.
- W3048193796 cites W2135160607 @default.
- W3048193796 cites W2137486085 @default.
- W3048193796 cites W2142801300 @default.
- W3048193796 cites W2150709895 @default.
- W3048193796 cites W2159929557 @default.
- W3048193796 cites W2500157231 @default.
- W3048193796 cites W2556517086 @default.
- W3048193796 cites W2573822039 @default.
- W3048193796 cites W2588195252 @default.
- W3048193796 cites W2726683057 @default.
- W3048193796 cites W2735808890 @default.
- W3048193796 cites W2747045779 @default.
- W3048193796 cites W2789481185 @default.
- W3048193796 cites W2789580956 @default.
- W3048193796 cites W2789663101 @default.
- W3048193796 cites W2791284877 @default.
- W3048193796 cites W2792192813 @default.
- W3048193796 cites W2906527151 @default.
- W3048193796 cites W2908682347 @default.
- W3048193796 cites W2909535050 @default.
- W3048193796 cites W2921695861 @default.
- W3048193796 cites W2922057079 @default.
- W3048193796 cites W2945037883 @default.
- W3048193796 cites W2963583696 @default.
- W3048193796 cites W3002588575 @default.
- W3048193796 cites W3024853581 @default.
- W3048193796 cites W3101444344 @default.
- W3048193796 doi "https://doi.org/10.1016/j.sigpro.2020.107731" @default.
- W3048193796 hasPublicationYear "2020" @default.
- W3048193796 type Work @default.
- W3048193796 sameAs 3048193796 @default.
- W3048193796 citedByCount "11" @default.
- W3048193796 countsByYear W30481937962021 @default.
- W3048193796 countsByYear W30481937962022 @default.
- W3048193796 countsByYear W30481937962023 @default.
- W3048193796 crossrefType "journal-article" @default.
- W3048193796 hasAuthorship W3048193796A5021979312 @default.
- W3048193796 hasAuthorship W3048193796A5043202934 @default.
- W3048193796 hasAuthorship W3048193796A5051806594 @default.
- W3048193796 hasAuthorship W3048193796A5055207211 @default.
- W3048193796 hasAuthorship W3048193796A5075312592 @default.
- W3048193796 hasConcept C104267543 @default.
- W3048193796 hasConcept C104317684 @default.
- W3048193796 hasConcept C105795698 @default.
- W3048193796 hasConcept C11413529 @default.
- W3048193796 hasConcept C115961682 @default.
- W3048193796 hasConcept C121332964 @default.
- W3048193796 hasConcept C134306372 @default.
- W3048193796 hasConcept C139945424 @default.
- W3048193796 hasConcept C154945302 @default.
- W3048193796 hasConcept C163716315 @default.
- W3048193796 hasConcept C185592680 @default.
- W3048193796 hasConcept C24590314 @default.
- W3048193796 hasConcept C31258907 @default.
- W3048193796 hasConcept C33923547 @default.
- W3048193796 hasConcept C39927690 @default.
- W3048193796 hasConcept C41008148 @default.
- W3048193796 hasConcept C4199805 @default.
- W3048193796 hasConcept C55493867 @default.
- W3048193796 hasConcept C62520636 @default.
- W3048193796 hasConcept C63479239 @default.
- W3048193796 hasConcept C84462506 @default.
- W3048193796 hasConcept C9390403 @default.
- W3048193796 hasConcept C99498987 @default.
- W3048193796 hasConceptScore W3048193796C104267543 @default.
- W3048193796 hasConceptScore W3048193796C104317684 @default.
- W3048193796 hasConceptScore W3048193796C105795698 @default.
- W3048193796 hasConceptScore W3048193796C11413529 @default.
- W3048193796 hasConceptScore W3048193796C115961682 @default.
- W3048193796 hasConceptScore W3048193796C121332964 @default.
- W3048193796 hasConceptScore W3048193796C134306372 @default.
- W3048193796 hasConceptScore W3048193796C139945424 @default.
- W3048193796 hasConceptScore W3048193796C154945302 @default.