Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048204630> ?p ?o ?g. }
- W3048204630 endingPage "1001" @default.
- W3048204630 startingPage "993" @default.
- W3048204630 abstract "Metal oxalate has become a most promising candidate as an anode material for lithium-ion and sodium-ion batteries. However, capacity decrease owing to the volume expansion of the active material during cycling is a problem. Herein, a rod-like CoC2 O4 ⋅2 H2 O/rGO hybrid is fabricated through a novel multistep solvo/hydrothermal strategy. The structural characteristics of the CoC2 O4 ⋅2 H2 O microrod wrapped using rGO sheets not only inhibit the volume variation of the hybrid electrode during cycling, but also accelerate the transfer of electrons and ions in the 3 D graphene network, thereby improving the electrochemical properties of CoC2 O4 ⋅2 H2 O. The CoC2 O4 ⋅2 H2 O/rGO electrode delivers a specific capacity of 1011.5 mA h g-1 at 0.2 A g-1 after 200 cycles for lithium storage, and a high capacity of 221.1 mA h g-1 at 0.2 A g-1 after 100 cycles for sodium storage. Moreover, the full cell CoC2 O4 ⋅2 H2 O/rGO//LiCoO2 consisting of the CoC2 O4 ⋅2 H2 O/rGO anode and LiCoO2 cathode maintains 138.1 mA h g-1 after 200 cycles at 0.2 A g-1 and has superior long-cycle stability. In addition, in situ Raman spectroscopy and in situ and ex situ X-ray diffraction techniques provide a unique opportunity to understand fully the reaction mechanism of CoC2 O4 ⋅2 H2 O/rGO. This work also gives a new perspective and solid research basis for the application of metal oxalate materials in high-performance lithium-ion and sodium-ion batteries." @default.
- W3048204630 created "2020-08-13" @default.
- W3048204630 creator A5023081367 @default.
- W3048204630 creator A5030146831 @default.
- W3048204630 creator A5061886325 @default.
- W3048204630 creator A5065236570 @default.
- W3048204630 creator A5083021050 @default.
- W3048204630 date "2020-12-03" @default.
- W3048204630 modified "2023-09-24" @default.
- W3048204630 title "Understanding the High‐Performance Anode Material of CoC 2 O 4 ⋅2 H 2 O Microrods Wrapped by Reduced Graphene Oxide for Lithium‐Ion and Sodium‐Ion Batteries" @default.
- W3048204630 cites W1231397417 @default.
- W3048204630 cites W1626854854 @default.
- W3048204630 cites W1966813828 @default.
- W3048204630 cites W1976965354 @default.
- W3048204630 cites W1977408650 @default.
- W3048204630 cites W1981260589 @default.
- W3048204630 cites W1989495814 @default.
- W3048204630 cites W2006318126 @default.
- W3048204630 cites W2007367492 @default.
- W3048204630 cites W2018908895 @default.
- W3048204630 cites W2022361101 @default.
- W3048204630 cites W2052100693 @default.
- W3048204630 cites W2072966311 @default.
- W3048204630 cites W2074835278 @default.
- W3048204630 cites W2078003875 @default.
- W3048204630 cites W2087527958 @default.
- W3048204630 cites W2089674183 @default.
- W3048204630 cites W2115010843 @default.
- W3048204630 cites W2138936929 @default.
- W3048204630 cites W2140804460 @default.
- W3048204630 cites W2212400298 @default.
- W3048204630 cites W2310959783 @default.
- W3048204630 cites W2325019826 @default.
- W3048204630 cites W2326536593 @default.
- W3048204630 cites W2352612610 @default.
- W3048204630 cites W2516523437 @default.
- W3048204630 cites W2525338421 @default.
- W3048204630 cites W2564178799 @default.
- W3048204630 cites W2605725930 @default.
- W3048204630 cites W2619091406 @default.
- W3048204630 cites W2622214511 @default.
- W3048204630 cites W2736323107 @default.
- W3048204630 cites W2736493897 @default.
- W3048204630 cites W2744298902 @default.
- W3048204630 cites W2767963171 @default.
- W3048204630 cites W2775480780 @default.
- W3048204630 cites W2782702479 @default.
- W3048204630 cites W2791402136 @default.
- W3048204630 cites W2792376140 @default.
- W3048204630 cites W2801309162 @default.
- W3048204630 cites W2806069969 @default.
- W3048204630 cites W2859126652 @default.
- W3048204630 cites W2883717348 @default.
- W3048204630 cites W2887965034 @default.
- W3048204630 cites W2890875266 @default.
- W3048204630 cites W2895414560 @default.
- W3048204630 cites W2895832482 @default.
- W3048204630 cites W2899116548 @default.
- W3048204630 cites W2901640519 @default.
- W3048204630 cites W2903253993 @default.
- W3048204630 cites W2910207974 @default.
- W3048204630 cites W2912946797 @default.
- W3048204630 cites W2920638708 @default.
- W3048204630 cites W2939944560 @default.
- W3048204630 cites W2946919287 @default.
- W3048204630 cites W2955413000 @default.
- W3048204630 cites W2963291125 @default.
- W3048204630 cites W2972748653 @default.
- W3048204630 cites W2976190442 @default.
- W3048204630 cites W2977479775 @default.
- W3048204630 cites W2978178642 @default.
- W3048204630 cites W2981243210 @default.
- W3048204630 cites W2982486154 @default.
- W3048204630 cites W2991201799 @default.
- W3048204630 cites W3007534380 @default.
- W3048204630 cites W4236001647 @default.
- W3048204630 doi "https://doi.org/10.1002/chem.202003309" @default.
- W3048204630 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32776604" @default.
- W3048204630 hasPublicationYear "2020" @default.
- W3048204630 type Work @default.
- W3048204630 sameAs 3048204630 @default.
- W3048204630 citedByCount "14" @default.
- W3048204630 countsByYear W30482046302021 @default.
- W3048204630 countsByYear W30482046302022 @default.
- W3048204630 countsByYear W30482046302023 @default.
- W3048204630 crossrefType "journal-article" @default.
- W3048204630 hasAuthorship W3048204630A5023081367 @default.
- W3048204630 hasAuthorship W3048204630A5030146831 @default.
- W3048204630 hasAuthorship W3048204630A5061886325 @default.
- W3048204630 hasAuthorship W3048204630A5065236570 @default.
- W3048204630 hasAuthorship W3048204630A5083021050 @default.
- W3048204630 hasConcept C127413603 @default.
- W3048204630 hasConcept C134018914 @default.
- W3048204630 hasConcept C145148216 @default.
- W3048204630 hasConcept C147789679 @default.
- W3048204630 hasConcept C171250308 @default.
- W3048204630 hasConcept C17525397 @default.
- W3048204630 hasConcept C178790620 @default.