Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048206382> ?p ?o ?g. }
- W3048206382 abstract "Fusing multi-modality medical images, such as MR and PET, can provide various anatomical or functional information about human body. But PET data is always unavailable due to different reasons such as cost, radiation, or other limitations. In this paper, we propose a 3D end-to-end synthesis network, called Bidirectional Mapping Generative Adversarial Networks (BMGAN), where image contexts and latent vector are effectively used and jointly optimized for brain MR-to-PET synthesis. Concretely, a bidirectional mapping mechanism is designed to embed the semantic information of PET images into the high dimensional latent space. And the 3D DenseU-Net generator architecture and the extensive objective functions are further utilized to improve the visual quality of synthetic results. The most appealing part is that the proposed method can synthesize the perceptually realistic PET images while preserving the diverse brain structures of different subjects. Experimental results demonstrate that the performance of the proposed method outperforms other competitive cross-modality synthesis methods in terms of quantitative measures, qualitative displays, and classification evaluation." @default.
- W3048206382 created "2020-08-13" @default.
- W3048206382 creator A5001212991 @default.
- W3048206382 creator A5033047627 @default.
- W3048206382 creator A5044290768 @default.
- W3048206382 creator A5066102428 @default.
- W3048206382 creator A5082547911 @default.
- W3048206382 creator A5083740892 @default.
- W3048206382 date "2020-08-08" @default.
- W3048206382 modified "2023-09-27" @default.
- W3048206382 title "Bidirectional Mapping Generative Adversarial Networks for Brain MR to PET Synthesis" @default.
- W3048206382 cites W1580389772 @default.
- W3048206382 cites W1686810756 @default.
- W3048206382 cites W1901129140 @default.
- W3048206382 cites W2015897296 @default.
- W3048206382 cites W2027798120 @default.
- W3048206382 cites W2043626403 @default.
- W3048206382 cites W2078524519 @default.
- W3048206382 cites W2099471712 @default.
- W3048206382 cites W2163605009 @default.
- W3048206382 cites W2194775991 @default.
- W3048206382 cites W2208340121 @default.
- W3048206382 cites W2252433728 @default.
- W3048206382 cites W2331128040 @default.
- W3048206382 cites W2517395172 @default.
- W3048206382 cites W2523468284 @default.
- W3048206382 cites W2560481159 @default.
- W3048206382 cites W2593414223 @default.
- W3048206382 cites W2729145866 @default.
- W3048206382 cites W2739799890 @default.
- W3048206382 cites W2754689878 @default.
- W3048206382 cites W2773012335 @default.
- W3048206382 cites W2789588857 @default.
- W3048206382 cites W2789713147 @default.
- W3048206382 cites W2884065486 @default.
- W3048206382 cites W2888958117 @default.
- W3048206382 cites W2890371642 @default.
- W3048206382 cites W2891669248 @default.
- W3048206382 cites W2962793481 @default.
- W3048206382 cites W2963073614 @default.
- W3048206382 cites W2963201933 @default.
- W3048206382 cites W2963330667 @default.
- W3048206382 cites W2963420272 @default.
- W3048206382 cites W2963446712 @default.
- W3048206382 cites W2963768110 @default.
- W3048206382 cites W2963882942 @default.
- W3048206382 cites W2963981733 @default.
- W3048206382 cites W3027389156 @default.
- W3048206382 cites W3089973229 @default.
- W3048206382 cites W3167125878 @default.
- W3048206382 cites W66427752 @default.
- W3048206382 doi "https://doi.org/10.48550/arxiv.2008.03483" @default.
- W3048206382 hasPublicationYear "2020" @default.
- W3048206382 type Work @default.
- W3048206382 sameAs 3048206382 @default.
- W3048206382 citedByCount "0" @default.
- W3048206382 crossrefType "posted-content" @default.
- W3048206382 hasAuthorship W3048206382A5001212991 @default.
- W3048206382 hasAuthorship W3048206382A5033047627 @default.
- W3048206382 hasAuthorship W3048206382A5044290768 @default.
- W3048206382 hasAuthorship W3048206382A5066102428 @default.
- W3048206382 hasAuthorship W3048206382A5082547911 @default.
- W3048206382 hasAuthorship W3048206382A5083740892 @default.
- W3048206382 hasBestOaLocation W30482063821 @default.
- W3048206382 hasConcept C115961682 @default.
- W3048206382 hasConcept C121332964 @default.
- W3048206382 hasConcept C153180895 @default.
- W3048206382 hasConcept C154945302 @default.
- W3048206382 hasConcept C163258240 @default.
- W3048206382 hasConcept C2780226545 @default.
- W3048206382 hasConcept C2780992000 @default.
- W3048206382 hasConcept C2988773926 @default.
- W3048206382 hasConcept C2989087649 @default.
- W3048206382 hasConcept C37736160 @default.
- W3048206382 hasConcept C39890363 @default.
- W3048206382 hasConcept C41008148 @default.
- W3048206382 hasConcept C62520636 @default.
- W3048206382 hasConceptScore W3048206382C115961682 @default.
- W3048206382 hasConceptScore W3048206382C121332964 @default.
- W3048206382 hasConceptScore W3048206382C153180895 @default.
- W3048206382 hasConceptScore W3048206382C154945302 @default.
- W3048206382 hasConceptScore W3048206382C163258240 @default.
- W3048206382 hasConceptScore W3048206382C2780226545 @default.
- W3048206382 hasConceptScore W3048206382C2780992000 @default.
- W3048206382 hasConceptScore W3048206382C2988773926 @default.
- W3048206382 hasConceptScore W3048206382C2989087649 @default.
- W3048206382 hasConceptScore W3048206382C37736160 @default.
- W3048206382 hasConceptScore W3048206382C39890363 @default.
- W3048206382 hasConceptScore W3048206382C41008148 @default.
- W3048206382 hasConceptScore W3048206382C62520636 @default.
- W3048206382 hasLocation W30482063821 @default.
- W3048206382 hasOpenAccess W3048206382 @default.
- W3048206382 hasPrimaryLocation W30482063821 @default.
- W3048206382 hasRelatedWork W2476099471 @default.
- W3048206382 hasRelatedWork W2936485314 @default.
- W3048206382 hasRelatedWork W2950862326 @default.
- W3048206382 hasRelatedWork W3003183197 @default.
- W3048206382 hasRelatedWork W3026661235 @default.
- W3048206382 hasRelatedWork W3095272432 @default.
- W3048206382 hasRelatedWork W3162018393 @default.