Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048209269> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W3048209269 endingPage "1095" @default.
- W3048209269 startingPage "1084" @default.
- W3048209269 abstract "The rapid progress of urbanization has expedited the process of urban planning, <italic xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>e.g.</i> , new residential, commercial areas, which in turn boosts the local travel demand. We propose a novel “off-deployment traffic estimation problem”, namely, to foresee the traffic condition changes of a region prior to the deployment of a construction plan. This problem is important to city planners to evaluate and develop urban deployment plans. However, this task is challenging. Traditional traffic estimation approaches lack the ability to solve this problem, since no data about the impact can be collected before the deployment and old data fails to capture the traffic pattern changes. In this paper, we define the off-deployment traffic estimation problem as a traffic generation problem, and develop a novel deep generative model TrafficGAN that captures the shared patterns across spatial regions of how traffic conditions evolve according to travel demand changes and underlying road network structures. In particular, TrafficGAN captures the road network structures through a dynamic filter in the dynamic convolutional layer. We evaluate our TrafficGAN using a large-scale traffic data collected from Shenzhen, China. Results show that TrafficGAN can more accurately estimate the traffic conditions compared with all baselines. We also showcase that TrafficGAN can identify potential traffic issues in some regions and suggest possible reasons." @default.
- W3048209269 created "2020-08-13" @default.
- W3048209269 creator A5002930471 @default.
- W3048209269 creator A5062492084 @default.
- W3048209269 creator A5074277827 @default.
- W3048209269 creator A5086198510 @default.
- W3048209269 creator A5086873237 @default.
- W3048209269 date "2022-08-01" @default.
- W3048209269 modified "2023-10-13" @default.
- W3048209269 title "Off-Deployment Traffic Estimation — A Traffic Generative Adversarial Networks Approach" @default.
- W3048209269 cites W149424455 @default.
- W3048209269 cites W1550669880 @default.
- W3048209269 cites W1570770538 @default.
- W3048209269 cites W1606702997 @default.
- W3048209269 cites W1937847179 @default.
- W3048209269 cites W1973749534 @default.
- W3048209269 cites W2031346385 @default.
- W3048209269 cites W2031674781 @default.
- W3048209269 cites W2089953722 @default.
- W3048209269 cites W2146096861 @default.
- W3048209269 cites W2163128056 @default.
- W3048209269 cites W2172041433 @default.
- W3048209269 cites W2280807668 @default.
- W3048209269 cites W2514012650 @default.
- W3048209269 cites W2535805784 @default.
- W3048209269 cites W2537914016 @default.
- W3048209269 cites W2741460999 @default.
- W3048209269 cites W2808862972 @default.
- W3048209269 cites W2809079004 @default.
- W3048209269 cites W2886627468 @default.
- W3048209269 cites W2888898292 @default.
- W3048209269 cites W2895806569 @default.
- W3048209269 cites W3003426638 @default.
- W3048209269 doi "https://doi.org/10.1109/tbdata.2020.3014511" @default.
- W3048209269 hasPublicationYear "2022" @default.
- W3048209269 type Work @default.
- W3048209269 sameAs 3048209269 @default.
- W3048209269 citedByCount "2" @default.
- W3048209269 countsByYear W30482092692022 @default.
- W3048209269 countsByYear W30482092692023 @default.
- W3048209269 crossrefType "journal-article" @default.
- W3048209269 hasAuthorship W3048209269A5002930471 @default.
- W3048209269 hasAuthorship W3048209269A5062492084 @default.
- W3048209269 hasAuthorship W3048209269A5074277827 @default.
- W3048209269 hasAuthorship W3048209269A5086198510 @default.
- W3048209269 hasAuthorship W3048209269A5086873237 @default.
- W3048209269 hasConcept C105339364 @default.
- W3048209269 hasConcept C111919701 @default.
- W3048209269 hasConcept C127413603 @default.
- W3048209269 hasConcept C162324750 @default.
- W3048209269 hasConcept C176715033 @default.
- W3048209269 hasConcept C22212356 @default.
- W3048209269 hasConcept C39853841 @default.
- W3048209269 hasConcept C41008148 @default.
- W3048209269 hasConcept C50522688 @default.
- W3048209269 hasConcept C79403827 @default.
- W3048209269 hasConceptScore W3048209269C105339364 @default.
- W3048209269 hasConceptScore W3048209269C111919701 @default.
- W3048209269 hasConceptScore W3048209269C127413603 @default.
- W3048209269 hasConceptScore W3048209269C162324750 @default.
- W3048209269 hasConceptScore W3048209269C176715033 @default.
- W3048209269 hasConceptScore W3048209269C22212356 @default.
- W3048209269 hasConceptScore W3048209269C39853841 @default.
- W3048209269 hasConceptScore W3048209269C41008148 @default.
- W3048209269 hasConceptScore W3048209269C50522688 @default.
- W3048209269 hasConceptScore W3048209269C79403827 @default.
- W3048209269 hasFunder F4320335353 @default.
- W3048209269 hasIssue "4" @default.
- W3048209269 hasLocation W30482092691 @default.
- W3048209269 hasOpenAccess W3048209269 @default.
- W3048209269 hasPrimaryLocation W30482092691 @default.
- W3048209269 hasRelatedWork W1967006421 @default.
- W3048209269 hasRelatedWork W1969481115 @default.
- W3048209269 hasRelatedWork W2021850411 @default.
- W3048209269 hasRelatedWork W2040086664 @default.
- W3048209269 hasRelatedWork W2062914339 @default.
- W3048209269 hasRelatedWork W2241653328 @default.
- W3048209269 hasRelatedWork W2360099075 @default.
- W3048209269 hasRelatedWork W589228320 @default.
- W3048209269 hasRelatedWork W764845464 @default.
- W3048209269 hasRelatedWork W776407684 @default.
- W3048209269 hasVolume "8" @default.
- W3048209269 isParatext "false" @default.
- W3048209269 isRetracted "false" @default.
- W3048209269 magId "3048209269" @default.
- W3048209269 workType "article" @default.