Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048212674> ?p ?o ?g. }
- W3048212674 endingPage "4474" @default.
- W3048212674 startingPage "4474" @default.
- W3048212674 abstract "Freezing of gait (FOG) is a debilitating motor phenomenon that is common among individuals with advanced Parkinson’s disease. Objective and sensitive measures are needed to better quantify FOG. The present work addresses this need by leveraging wearable devices and machine-learning methods to develop and evaluate automated detection of FOG and quantification of its severity. Seventy-one subjects with FOG completed a FOG-provoking test while wearing three wearable sensors (lower back and each ankle). Subjects were videotaped before (OFF state) and after (ON state) they took their antiparkinsonian medications. Annotations of the videos provided the “ground-truth” for FOG detection. A leave-one-patient-out validation process with a training set of 57 subjects resulted in 84.1% sensitivity, 83.4% specificity, and 85.0% accuracy for FOG detection. Similar results were seen in an independent test set (data from 14 other subjects). Two derived outcomes, percent time frozen and number of FOG episodes, were associated with self-report of FOG. Both derived-metrics were higher in the OFF state than in the ON state and in the most challenging level of the FOG-provoking test, compared to the least challenging level. These results suggest that this automated machine-learning approach can objectively assess FOG and that its outcomes are responsive to therapeutic interventions." @default.
- W3048212674 created "2020-08-13" @default.
- W3048212674 creator A5010091304 @default.
- W3048212674 creator A5016607286 @default.
- W3048212674 creator A5019442831 @default.
- W3048212674 creator A5029925623 @default.
- W3048212674 creator A5039274182 @default.
- W3048212674 creator A5043195571 @default.
- W3048212674 creator A5064193458 @default.
- W3048212674 creator A5070038917 @default.
- W3048212674 date "2020-08-10" @default.
- W3048212674 modified "2023-10-12" @default.
- W3048212674 title "Using Wearable Sensors and Machine Learning to Automatically Detect Freezing of Gait during a FOG-Provoking Test" @default.
- W3048212674 cites W1920394150 @default.
- W3048212674 cites W1975629634 @default.
- W3048212674 cites W2006706761 @default.
- W3048212674 cites W2025926226 @default.
- W3048212674 cites W2039539123 @default.
- W3048212674 cites W2122354382 @default.
- W3048212674 cites W2127199892 @default.
- W3048212674 cites W2132894148 @default.
- W3048212674 cites W2136883398 @default.
- W3048212674 cites W2145362071 @default.
- W3048212674 cites W2159552567 @default.
- W3048212674 cites W2160698760 @default.
- W3048212674 cites W2167271993 @default.
- W3048212674 cites W2171181994 @default.
- W3048212674 cites W2173755848 @default.
- W3048212674 cites W2177319998 @default.
- W3048212674 cites W2327749436 @default.
- W3048212674 cites W2460936701 @default.
- W3048212674 cites W2523036714 @default.
- W3048212674 cites W2560346798 @default.
- W3048212674 cites W2582969065 @default.
- W3048212674 cites W2587512840 @default.
- W3048212674 cites W2588989789 @default.
- W3048212674 cites W2615874593 @default.
- W3048212674 cites W2894777010 @default.
- W3048212674 cites W2917698049 @default.
- W3048212674 cites W2942630870 @default.
- W3048212674 cites W2990845518 @default.
- W3048212674 cites W2999976987 @default.
- W3048212674 cites W3007667280 @default.
- W3048212674 cites W3013838736 @default.
- W3048212674 cites W3022697178 @default.
- W3048212674 doi "https://doi.org/10.3390/s20164474" @default.
- W3048212674 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7472497" @default.
- W3048212674 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32785163" @default.
- W3048212674 hasPublicationYear "2020" @default.
- W3048212674 type Work @default.
- W3048212674 sameAs 3048212674 @default.
- W3048212674 citedByCount "27" @default.
- W3048212674 countsByYear W30482126742020 @default.
- W3048212674 countsByYear W30482126742021 @default.
- W3048212674 countsByYear W30482126742022 @default.
- W3048212674 countsByYear W30482126742023 @default.
- W3048212674 crossrefType "journal-article" @default.
- W3048212674 hasAuthorship W3048212674A5010091304 @default.
- W3048212674 hasAuthorship W3048212674A5016607286 @default.
- W3048212674 hasAuthorship W3048212674A5019442831 @default.
- W3048212674 hasAuthorship W3048212674A5029925623 @default.
- W3048212674 hasAuthorship W3048212674A5039274182 @default.
- W3048212674 hasAuthorship W3048212674A5043195571 @default.
- W3048212674 hasAuthorship W3048212674A5064193458 @default.
- W3048212674 hasAuthorship W3048212674A5070038917 @default.
- W3048212674 hasBestOaLocation W30482126741 @default.
- W3048212674 hasConcept C119857082 @default.
- W3048212674 hasConcept C141071460 @default.
- W3048212674 hasConcept C149635348 @default.
- W3048212674 hasConcept C150594956 @default.
- W3048212674 hasConcept C151730666 @default.
- W3048212674 hasConcept C151800584 @default.
- W3048212674 hasConcept C154945302 @default.
- W3048212674 hasConcept C190385971 @default.
- W3048212674 hasConcept C2777267654 @default.
- W3048212674 hasConcept C2778640784 @default.
- W3048212674 hasConcept C2779553940 @default.
- W3048212674 hasConcept C2909001638 @default.
- W3048212674 hasConcept C3017944768 @default.
- W3048212674 hasConcept C41008148 @default.
- W3048212674 hasConcept C44154836 @default.
- W3048212674 hasConcept C71924100 @default.
- W3048212674 hasConcept C86803240 @default.
- W3048212674 hasConcept C99454951 @default.
- W3048212674 hasConcept C99508421 @default.
- W3048212674 hasConceptScore W3048212674C119857082 @default.
- W3048212674 hasConceptScore W3048212674C141071460 @default.
- W3048212674 hasConceptScore W3048212674C149635348 @default.
- W3048212674 hasConceptScore W3048212674C150594956 @default.
- W3048212674 hasConceptScore W3048212674C151730666 @default.
- W3048212674 hasConceptScore W3048212674C151800584 @default.
- W3048212674 hasConceptScore W3048212674C154945302 @default.
- W3048212674 hasConceptScore W3048212674C190385971 @default.
- W3048212674 hasConceptScore W3048212674C2777267654 @default.
- W3048212674 hasConceptScore W3048212674C2778640784 @default.
- W3048212674 hasConceptScore W3048212674C2779553940 @default.
- W3048212674 hasConceptScore W3048212674C2909001638 @default.
- W3048212674 hasConceptScore W3048212674C3017944768 @default.