Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048217314> ?p ?o ?g. }
- W3048217314 endingPage "11611" @default.
- W3048217314 startingPage "11599" @default.
- W3048217314 abstract "Unmanned aerial vehicles (UAVs) can be employed as aerial base stations to support communication for the ground users (GUs). However, the aerial-to-ground (A2G) channel link is dominated by line-of-sight (LoS) due to the high flying altitude, which is easily wiretapped by the ground eavesdroppers (GEs). In this case, a single UAV has limited maneuvering capacity to obtain the desired secure rate in the presence of multiple eavesdroppers. In this paper, we propose a cooperative jamming approach by letting UAV jammers help the UAV transmitter defend against GEs. To be specific, the UAV transmitter sends the confidential information to GUs, and the UAV jammers send the artificial noise signals to the GEs by 3D beamforming. We propose a multi-agent deep reinforcement learning (MADRL) approach, i.e., multi-agent deep deterministic policy gradient (MADDPG) to maximize the secure capacity by jointly optimizing the trajectory of UAVs, the transmit power from UAV transmitter and the jamming power from the UAV jammers. The MADDPG algorithm adopts centralized training and distributed execution. The simulation results show the MADRL method can realize the joint trajectory design of UAVs and achieve good performance. To improve the learning efficiency and convergence, we further propose a continuous action attention MADDPG (CAA-MADDPG) method, where the agent learns to pay attention to the actions and observations of other agents that are more relevant with it. From the simulation results, the rewards performance of CAA-MADDPG is better than the MADDPG without attention." @default.
- W3048217314 created "2020-08-13" @default.
- W3048217314 creator A5007797149 @default.
- W3048217314 creator A5039553287 @default.
- W3048217314 creator A5050402661 @default.
- W3048217314 creator A5063133535 @default.
- W3048217314 creator A5063667378 @default.
- W3048217314 creator A5071183299 @default.
- W3048217314 date "2020-10-01" @default.
- W3048217314 modified "2023-10-15" @default.
- W3048217314 title "UAV-Enabled Secure Communications by Multi-Agent Deep Reinforcement Learning" @default.
- W3048217314 cites W1542941925 @default.
- W3048217314 cites W1963871420 @default.
- W3048217314 cites W2031834036 @default.
- W3048217314 cites W2056783850 @default.
- W3048217314 cites W2080147975 @default.
- W3048217314 cites W2122653429 @default.
- W3048217314 cites W2753941074 @default.
- W3048217314 cites W2759529277 @default.
- W3048217314 cites W2783222607 @default.
- W3048217314 cites W2790256744 @default.
- W3048217314 cites W2797086109 @default.
- W3048217314 cites W2885293674 @default.
- W3048217314 cites W2886124254 @default.
- W3048217314 cites W2891339338 @default.
- W3048217314 cites W2899898540 @default.
- W3048217314 cites W2901790394 @default.
- W3048217314 cites W2905487115 @default.
- W3048217314 cites W2907916537 @default.
- W3048217314 cites W2912719095 @default.
- W3048217314 cites W2914952404 @default.
- W3048217314 cites W2915576678 @default.
- W3048217314 cites W2962751492 @default.
- W3048217314 cites W2962890638 @default.
- W3048217314 cites W2963000651 @default.
- W3048217314 cites W2963145597 @default.
- W3048217314 cites W2963290405 @default.
- W3048217314 cites W2964125271 @default.
- W3048217314 cites W2964335392 @default.
- W3048217314 cites W2965642309 @default.
- W3048217314 cites W2993809815 @default.
- W3048217314 cites W2998868424 @default.
- W3048217314 cites W3006431373 @default.
- W3048217314 cites W3099804988 @default.
- W3048217314 cites W3106530718 @default.
- W3048217314 cites W4240278190 @default.
- W3048217314 doi "https://doi.org/10.1109/tvt.2020.3014788" @default.
- W3048217314 hasPublicationYear "2020" @default.
- W3048217314 type Work @default.
- W3048217314 sameAs 3048217314 @default.
- W3048217314 citedByCount "93" @default.
- W3048217314 countsByYear W30482173142020 @default.
- W3048217314 countsByYear W30482173142021 @default.
- W3048217314 countsByYear W30482173142022 @default.
- W3048217314 countsByYear W30482173142023 @default.
- W3048217314 crossrefType "journal-article" @default.
- W3048217314 hasAuthorship W3048217314A5007797149 @default.
- W3048217314 hasAuthorship W3048217314A5039553287 @default.
- W3048217314 hasAuthorship W3048217314A5050402661 @default.
- W3048217314 hasAuthorship W3048217314A5063133535 @default.
- W3048217314 hasAuthorship W3048217314A5063667378 @default.
- W3048217314 hasAuthorship W3048217314A5071183299 @default.
- W3048217314 hasBestOaLocation W30482173141 @default.
- W3048217314 hasConcept C121332964 @default.
- W3048217314 hasConcept C127162648 @default.
- W3048217314 hasConcept C1276947 @default.
- W3048217314 hasConcept C13662910 @default.
- W3048217314 hasConcept C154945302 @default.
- W3048217314 hasConcept C2779079576 @default.
- W3048217314 hasConcept C31258907 @default.
- W3048217314 hasConcept C41008148 @default.
- W3048217314 hasConcept C47798520 @default.
- W3048217314 hasConcept C54197355 @default.
- W3048217314 hasConcept C54355233 @default.
- W3048217314 hasConcept C59519942 @default.
- W3048217314 hasConcept C65422117 @default.
- W3048217314 hasConcept C68649174 @default.
- W3048217314 hasConcept C76155785 @default.
- W3048217314 hasConcept C79403827 @default.
- W3048217314 hasConcept C86803240 @default.
- W3048217314 hasConcept C97355855 @default.
- W3048217314 hasConcept C97541855 @default.
- W3048217314 hasConceptScore W3048217314C121332964 @default.
- W3048217314 hasConceptScore W3048217314C127162648 @default.
- W3048217314 hasConceptScore W3048217314C1276947 @default.
- W3048217314 hasConceptScore W3048217314C13662910 @default.
- W3048217314 hasConceptScore W3048217314C154945302 @default.
- W3048217314 hasConceptScore W3048217314C2779079576 @default.
- W3048217314 hasConceptScore W3048217314C31258907 @default.
- W3048217314 hasConceptScore W3048217314C41008148 @default.
- W3048217314 hasConceptScore W3048217314C47798520 @default.
- W3048217314 hasConceptScore W3048217314C54197355 @default.
- W3048217314 hasConceptScore W3048217314C54355233 @default.
- W3048217314 hasConceptScore W3048217314C59519942 @default.
- W3048217314 hasConceptScore W3048217314C65422117 @default.
- W3048217314 hasConceptScore W3048217314C68649174 @default.
- W3048217314 hasConceptScore W3048217314C76155785 @default.
- W3048217314 hasConceptScore W3048217314C79403827 @default.