Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048223779> ?p ?o ?g. }
- W3048223779 endingPage "5060" @default.
- W3048223779 startingPage "5048" @default.
- W3048223779 abstract "Purpose Deep learning‐based whole‐heart segmentation in coronary computed tomography angiography (CCTA) allows the extraction of quantitative imaging measures for cardiovascular risk prediction. Automatic extraction of these measures in patients undergoing only non‐contrast‐enhanced CT (NCCT) scanning would be valuable, but defining a manual reference standard that would allow training a deep learning‐based method for whole‐heart segmentation in NCCT is challenging, if not impossible. In this work, we leverage dual‐energy information provided by a dual‐layer detector CT scanner to obtain a reference standard in virtual non‐contrast (VNC) CT images mimicking NCCT images, and train a three‐dimensional (3D) convolutional neural network (CNN) for the segmentation of VNC as well as NCCT images. Methods Eighteen patients were scanned with and without contrast enhancement on a dual‐layer detector CT scanner. Contrast‐enhanced acquisitions were reconstructed into a CCTA and a perfectly aligned VNC image. In each CCTA image, manual reference segmentations of the left ventricular (LV) myocardium, LV cavity, right ventricle, left atrium, right atrium, ascending aorta, and pulmonary artery trunk were obtained and propagated to the corresponding VNC image. These VNC images and reference segmentations were used to train 3D CNNs in a sixfold cross‐validation for automatic segmentation in either VNC images or NCCT images reconstructed from the non‐contrast‐enhanced acquisition. Automatic segmentation in VNC images was evaluated using the Dice similarity coefficient (DSC) and average symmetric surface distance (ASSD). Automatically determined volumes of the cardiac chambers and LV myocardium in NCCT were compared to reference volumes of the same patient in CCTA by Bland–Altman analysis. An additional independent multivendor multicenter set of single‐energy NCCT images from 290 patients was used for qualitative analysis, in which two observers graded segmentations on a five‐point scale. Results Automatic segmentations in VNC images showed good agreement with reference segmentations, with an average DSC of 0.897 ± 0.034 and an average ASSD of 1.42 ± 0.45 mm. Volume differences [95% confidence interval] between automatic NCCT and reference CCTA segmentations were −19 [−67; 30] mL for LV myocardium, −25 [−78; 29] mL for LV cavity, −29 [−73; 14] mL for right ventricle, −20 [−62; 21] mL for left atrium, and −19 [−73; 34] mL for right atrium, respectively. In 214 (74%) NCCT images from the independent multivendor multicenter set, both observers agreed that the automatic segmentation was mostly accurate (grade 3) or better. Conclusion Our automatic method produced accurate whole‐heart segmentations in NCCT images using a CNN trained with VNC images from a dual‐layer detector CT scanner. This method might enable quantification of additional cardiac measures from NCCT images for improved cardiovascular risk prediction." @default.
- W3048223779 created "2020-08-13" @default.
- W3048223779 creator A5002161935 @default.
- W3048223779 creator A5026023775 @default.
- W3048223779 creator A5028639654 @default.
- W3048223779 creator A5033933581 @default.
- W3048223779 creator A5053071529 @default.
- W3048223779 creator A5063560179 @default.
- W3048223779 creator A5065503388 @default.
- W3048223779 creator A5084070018 @default.
- W3048223779 date "2020-08-27" @default.
- W3048223779 modified "2023-10-10" @default.
- W3048223779 title "Deep learning from dual‐energy information for whole‐heart segmentation in dual‐energy and single‐energy non‐contrast‐enhanced cardiac CT" @default.
- W3048223779 cites W1549847950 @default.
- W3048223779 cites W1978150748 @default.
- W3048223779 cites W1997226166 @default.
- W3048223779 cites W1997811042 @default.
- W3048223779 cites W1998134891 @default.
- W3048223779 cites W1998650897 @default.
- W3048223779 cites W2011214625 @default.
- W3048223779 cites W2086734311 @default.
- W3048223779 cites W2099322075 @default.
- W3048223779 cites W2101689475 @default.
- W3048223779 cites W2115401827 @default.
- W3048223779 cites W2120437701 @default.
- W3048223779 cites W2142165829 @default.
- W3048223779 cites W2162140684 @default.
- W3048223779 cites W2171963641 @default.
- W3048223779 cites W2265858828 @default.
- W3048223779 cites W2340907062 @default.
- W3048223779 cites W243886314 @default.
- W3048223779 cites W2560294561 @default.
- W3048223779 cites W2572805404 @default.
- W3048223779 cites W2592866739 @default.
- W3048223779 cites W2727896881 @default.
- W3048223779 cites W2775350865 @default.
- W3048223779 cites W2791373118 @default.
- W3048223779 cites W2886856931 @default.
- W3048223779 cites W2919630359 @default.
- W3048223779 cites W2921887739 @default.
- W3048223779 cites W2963705314 @default.
- W3048223779 cites W2966333895 @default.
- W3048223779 cites W2979544856 @default.
- W3048223779 cites W2991286928 @default.
- W3048223779 cites W3006334850 @default.
- W3048223779 doi "https://doi.org/10.1002/mp.14451" @default.
- W3048223779 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32786071" @default.
- W3048223779 hasPublicationYear "2020" @default.
- W3048223779 type Work @default.
- W3048223779 sameAs 3048223779 @default.
- W3048223779 citedByCount "23" @default.
- W3048223779 countsByYear W30482237792021 @default.
- W3048223779 countsByYear W30482237792022 @default.
- W3048223779 countsByYear W30482237792023 @default.
- W3048223779 crossrefType "journal-article" @default.
- W3048223779 hasAuthorship W3048223779A5002161935 @default.
- W3048223779 hasAuthorship W3048223779A5026023775 @default.
- W3048223779 hasAuthorship W3048223779A5028639654 @default.
- W3048223779 hasAuthorship W3048223779A5033933581 @default.
- W3048223779 hasAuthorship W3048223779A5053071529 @default.
- W3048223779 hasAuthorship W3048223779A5063560179 @default.
- W3048223779 hasAuthorship W3048223779A5065503388 @default.
- W3048223779 hasAuthorship W3048223779A5084070018 @default.
- W3048223779 hasBestOaLocation W30482237792 @default.
- W3048223779 hasConcept C124504099 @default.
- W3048223779 hasConcept C154945302 @default.
- W3048223779 hasConcept C163892561 @default.
- W3048223779 hasConcept C2779751349 @default.
- W3048223779 hasConcept C2989005 @default.
- W3048223779 hasConcept C31972630 @default.
- W3048223779 hasConcept C41008148 @default.
- W3048223779 hasConcept C71924100 @default.
- W3048223779 hasConcept C89600930 @default.
- W3048223779 hasConceptScore W3048223779C124504099 @default.
- W3048223779 hasConceptScore W3048223779C154945302 @default.
- W3048223779 hasConceptScore W3048223779C163892561 @default.
- W3048223779 hasConceptScore W3048223779C2779751349 @default.
- W3048223779 hasConceptScore W3048223779C2989005 @default.
- W3048223779 hasConceptScore W3048223779C31972630 @default.
- W3048223779 hasConceptScore W3048223779C41008148 @default.
- W3048223779 hasConceptScore W3048223779C71924100 @default.
- W3048223779 hasConceptScore W3048223779C89600930 @default.
- W3048223779 hasFunder F4320334893 @default.
- W3048223779 hasIssue "10" @default.
- W3048223779 hasLocation W30482237791 @default.
- W3048223779 hasLocation W30482237792 @default.
- W3048223779 hasLocation W30482237793 @default.
- W3048223779 hasOpenAccess W3048223779 @default.
- W3048223779 hasPrimaryLocation W30482237791 @default.
- W3048223779 hasRelatedWork W1669643531 @default.
- W3048223779 hasRelatedWork W1982826852 @default.
- W3048223779 hasRelatedWork W2005437358 @default.
- W3048223779 hasRelatedWork W2008656436 @default.
- W3048223779 hasRelatedWork W2023558673 @default.
- W3048223779 hasRelatedWork W2110230079 @default.
- W3048223779 hasRelatedWork W2134924024 @default.
- W3048223779 hasRelatedWork W2517104666 @default.
- W3048223779 hasRelatedWork W2613186388 @default.