Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048236912> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W3048236912 endingPage "339" @default.
- W3048236912 startingPage "332" @default.
- W3048236912 abstract "Abstract Large-scale trajectory dataset is always required for self-driving and many other applications. In this paper, we focus on the trajectory generation problem, which aims to generate qualified trajectory dataset that is indistinguishable from real trajectories, for fulfilling the needs of large-scale trajectory data by self-driving simulation and traffic analysis tasks in data sparse cities or regions. We propose two advanced solutions, namely TrajGAN and TrajVAE, which utilize LSTM to model the characteristics of trajectories first, and then take advantage of Generative Adversarial Network (GAN) and Variational AutoEncoder (VAE) frameworks respectively to generate trajectories. In order of compare the similarity of existing trajectories in our dataset and the generated trajectories, we utilize multiple trajectory similarity metrics. Through several experiments, we demonstrate that our method is more accurate and stable than the baseline." @default.
- W3048236912 created "2020-08-13" @default.
- W3048236912 creator A5028546502 @default.
- W3048236912 creator A5032749574 @default.
- W3048236912 creator A5044307720 @default.
- W3048236912 creator A5051378198 @default.
- W3048236912 creator A5078226849 @default.
- W3048236912 creator A5086062267 @default.
- W3048236912 date "2021-03-01" @default.
- W3048236912 modified "2023-10-03" @default.
- W3048236912 title "TrajVAE: A Variational AutoEncoder model for trajectory generation" @default.
- W3048236912 cites W1990588199 @default.
- W3048236912 cites W2151295706 @default.
- W3048236912 cites W2313076811 @default.
- W3048236912 cites W2514056879 @default.
- W3048236912 cites W2603192734 @default.
- W3048236912 cites W2626695100 @default.
- W3048236912 cites W2769341224 @default.
- W3048236912 cites W2795402696 @default.
- W3048236912 cites W2807894308 @default.
- W3048236912 cites W2841091033 @default.
- W3048236912 cites W2891214310 @default.
- W3048236912 cites W2892165060 @default.
- W3048236912 cites W2931576132 @default.
- W3048236912 cites W2932960505 @default.
- W3048236912 cites W2945407949 @default.
- W3048236912 cites W2953695928 @default.
- W3048236912 cites W2964219393 @default.
- W3048236912 cites W2965539152 @default.
- W3048236912 cites W3012510853 @default.
- W3048236912 doi "https://doi.org/10.1016/j.neucom.2020.03.120" @default.
- W3048236912 hasPublicationYear "2021" @default.
- W3048236912 type Work @default.
- W3048236912 sameAs 3048236912 @default.
- W3048236912 citedByCount "29" @default.
- W3048236912 countsByYear W30482369122021 @default.
- W3048236912 countsByYear W30482369122022 @default.
- W3048236912 countsByYear W30482369122023 @default.
- W3048236912 crossrefType "journal-article" @default.
- W3048236912 hasAuthorship W3048236912A5028546502 @default.
- W3048236912 hasAuthorship W3048236912A5032749574 @default.
- W3048236912 hasAuthorship W3048236912A5044307720 @default.
- W3048236912 hasAuthorship W3048236912A5051378198 @default.
- W3048236912 hasAuthorship W3048236912A5078226849 @default.
- W3048236912 hasAuthorship W3048236912A5086062267 @default.
- W3048236912 hasConcept C101738243 @default.
- W3048236912 hasConcept C108583219 @default.
- W3048236912 hasConcept C11413529 @default.
- W3048236912 hasConcept C121332964 @default.
- W3048236912 hasConcept C1276947 @default.
- W3048236912 hasConcept C13662910 @default.
- W3048236912 hasConcept C154945302 @default.
- W3048236912 hasConcept C28826006 @default.
- W3048236912 hasConcept C33923547 @default.
- W3048236912 hasConcept C41008148 @default.
- W3048236912 hasConceptScore W3048236912C101738243 @default.
- W3048236912 hasConceptScore W3048236912C108583219 @default.
- W3048236912 hasConceptScore W3048236912C11413529 @default.
- W3048236912 hasConceptScore W3048236912C121332964 @default.
- W3048236912 hasConceptScore W3048236912C1276947 @default.
- W3048236912 hasConceptScore W3048236912C13662910 @default.
- W3048236912 hasConceptScore W3048236912C154945302 @default.
- W3048236912 hasConceptScore W3048236912C28826006 @default.
- W3048236912 hasConceptScore W3048236912C33923547 @default.
- W3048236912 hasConceptScore W3048236912C41008148 @default.
- W3048236912 hasFunder F4320324720 @default.
- W3048236912 hasLocation W30482369121 @default.
- W3048236912 hasOpenAccess W3048236912 @default.
- W3048236912 hasPrimaryLocation W30482369121 @default.
- W3048236912 hasRelatedWork W2669956259 @default.
- W3048236912 hasRelatedWork W2946739205 @default.
- W3048236912 hasRelatedWork W3019797369 @default.
- W3048236912 hasRelatedWork W3048468193 @default.
- W3048236912 hasRelatedWork W3134637941 @default.
- W3048236912 hasRelatedWork W3165463024 @default.
- W3048236912 hasRelatedWork W4226497253 @default.
- W3048236912 hasRelatedWork W4287178339 @default.
- W3048236912 hasRelatedWork W4287995534 @default.
- W3048236912 hasRelatedWork W4318040948 @default.
- W3048236912 hasVolume "428" @default.
- W3048236912 isParatext "false" @default.
- W3048236912 isRetracted "false" @default.
- W3048236912 magId "3048236912" @default.
- W3048236912 workType "article" @default.