Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048248379> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W3048248379 endingPage "1793" @default.
- W3048248379 startingPage "1787" @default.
- W3048248379 abstract "At present, the number of vehicles in the cities are increasing rapidly and also which may cause accidents, so the prevention of accidents is a major challenge. According to autonomous vehicle technology and development, machine learning methods have been used to detect the driver‟s condition to improve the safety of the passengers and commuters in the road. Apart from the basic characteristics such as age, gender, driving experience, driver‟s previous accident history of the driver, driver's condition can be identified by considering the factors such as driver's facial expressions, eye blinking, head movements, usage of cell phone while driving, alcohol and accident sensor. Recent technologies such as video processing, image processing, and analysis using machine learning algorithms could be used to capture the constant images and videos of the driver to detect the behavior and to calculate the level of drowsiness. For example, a driver driving a long distance may feel tired and can be warned to take rest by giving a warning signal by an audio alarm. Thus, this work uses machine learning-based feature extraction methods for determining the drowsiness level of a driver." @default.
- W3048248379 created "2020-08-13" @default.
- W3048248379 creator A5007605698 @default.
- W3048248379 creator A5009747920 @default.
- W3048248379 creator A5055732746 @default.
- W3048248379 creator A5084581200 @default.
- W3048248379 creator A5088745191 @default.
- W3048248379 date "2020-01-01" @default.
- W3048248379 modified "2023-09-26" @default.
- W3048248379 title "MACHINE LEARNING BASED FEATURE EXTRACTION METHODS FOR ESTIMATION OF DRIVER'S DROWSINESS" @default.
- W3048248379 hasPublicationYear "2020" @default.
- W3048248379 type Work @default.
- W3048248379 sameAs 3048248379 @default.
- W3048248379 citedByCount "0" @default.
- W3048248379 crossrefType "journal-article" @default.
- W3048248379 hasAuthorship W3048248379A5007605698 @default.
- W3048248379 hasAuthorship W3048248379A5009747920 @default.
- W3048248379 hasAuthorship W3048248379A5055732746 @default.
- W3048248379 hasAuthorship W3048248379A5084581200 @default.
- W3048248379 hasAuthorship W3048248379A5088745191 @default.
- W3048248379 hasConcept C119857082 @default.
- W3048248379 hasConcept C127413603 @default.
- W3048248379 hasConcept C138885662 @default.
- W3048248379 hasConcept C146978453 @default.
- W3048248379 hasConcept C154945302 @default.
- W3048248379 hasConcept C2776401178 @default.
- W3048248379 hasConcept C2778707766 @default.
- W3048248379 hasConcept C2779119184 @default.
- W3048248379 hasConcept C31972630 @default.
- W3048248379 hasConcept C41008148 @default.
- W3048248379 hasConcept C41895202 @default.
- W3048248379 hasConcept C52622490 @default.
- W3048248379 hasConcept C87833898 @default.
- W3048248379 hasConceptScore W3048248379C119857082 @default.
- W3048248379 hasConceptScore W3048248379C127413603 @default.
- W3048248379 hasConceptScore W3048248379C138885662 @default.
- W3048248379 hasConceptScore W3048248379C146978453 @default.
- W3048248379 hasConceptScore W3048248379C154945302 @default.
- W3048248379 hasConceptScore W3048248379C2776401178 @default.
- W3048248379 hasConceptScore W3048248379C2778707766 @default.
- W3048248379 hasConceptScore W3048248379C2779119184 @default.
- W3048248379 hasConceptScore W3048248379C31972630 @default.
- W3048248379 hasConceptScore W3048248379C41008148 @default.
- W3048248379 hasConceptScore W3048248379C41895202 @default.
- W3048248379 hasConceptScore W3048248379C52622490 @default.
- W3048248379 hasConceptScore W3048248379C87833898 @default.
- W3048248379 hasIssue "14" @default.
- W3048248379 hasLocation W30482483791 @default.
- W3048248379 hasOpenAccess W3048248379 @default.
- W3048248379 hasPrimaryLocation W30482483791 @default.
- W3048248379 hasRelatedWork W1539502928 @default.
- W3048248379 hasRelatedWork W2005749985 @default.
- W3048248379 hasRelatedWork W2037698767 @default.
- W3048248379 hasRelatedWork W2097165282 @default.
- W3048248379 hasRelatedWork W2809929560 @default.
- W3048248379 hasRelatedWork W2901059948 @default.
- W3048248379 hasRelatedWork W2902196543 @default.
- W3048248379 hasRelatedWork W2904341128 @default.
- W3048248379 hasRelatedWork W2985324572 @default.
- W3048248379 hasRelatedWork W2996238857 @default.
- W3048248379 hasRelatedWork W3023955880 @default.
- W3048248379 hasRelatedWork W3042756875 @default.
- W3048248379 hasRelatedWork W3097166686 @default.
- W3048248379 hasRelatedWork W3111479713 @default.
- W3048248379 hasRelatedWork W3157946096 @default.
- W3048248379 hasRelatedWork W3159909155 @default.
- W3048248379 hasRelatedWork W3173000970 @default.
- W3048248379 hasRelatedWork W3176462845 @default.
- W3048248379 hasRelatedWork W3207388863 @default.
- W3048248379 hasRelatedWork W353623167 @default.
- W3048248379 hasVolume "7" @default.
- W3048248379 isParatext "false" @default.
- W3048248379 isRetracted "false" @default.
- W3048248379 magId "3048248379" @default.
- W3048248379 workType "article" @default.