Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048258161> ?p ?o ?g. }
- W3048258161 endingPage "5399" @default.
- W3048258161 startingPage "5399" @default.
- W3048258161 abstract "Granulation is a physiological disorder of juice sacs in citrus fruit, causing juice sacs to become hard and dry and resulting in decreased internal quality of citrus fruit. Honey pomelo is a thick-skinned citrus fruit, and it is difficult to identify the extent of granulation by observation of the outer peel and fruit shape. In this study, a rapid and non-destructive testing method using visible and near-infrared transmittance spectroscopy combined with machine vision technology was applied to identify and estimate granulation inside fruit. A total of 600 samples in different growth periods was harvested, and fruit were divided into five classes according to five granulation levels. Spectral data were obtained for two ranges of 400–1100 nm and 900–1700 nm by visible and near-infrared transmittance spectroscopy. In addition, chemometrics were used to measure the chemical changes of soluble solid content (SSC), titratable acidity (TA), and moisture content (MC) caused by different granulation levels. Machine vision technology can rapidly estimate the external characteristics of samples and measure the physical changes in mass and volume caused by different granulation levels. Compared with using a single or traditional methods, the predictive performances of multi-category classification models (PCA-SVM and PCA-GRNN) were significantly enhanced. In particular, the model accuracy rate (ARM) was 99% for PCA-GRNN, with classification accuracy (CA), classification sensitivity (CS), and classification specificity (CSP) of 0.9950, 0.9750, and 0.9934, respectively. The results showed that this method has great potential for the identification and estimation of granulation. Multi-source data fusion and application of a multi-category classification model with the smallest number of input layers and acceptable high predictive performances are proposed for on-line applications. This method can be effectively used on-line for the non-destructive detection of fruits with granulation." @default.
- W3048258161 created "2020-08-13" @default.
- W3048258161 creator A5003001178 @default.
- W3048258161 creator A5004345759 @default.
- W3048258161 creator A5028555717 @default.
- W3048258161 date "2020-08-05" @default.
- W3048258161 modified "2023-10-11" @default.
- W3048258161 title "Non-Destructive Identification and Estimation of Granulation in Honey Pomelo Using Visible and Near-Infrared Transmittance Spectroscopy Combined with Machine Vision Technology" @default.
- W3048258161 cites W107254093 @default.
- W3048258161 cites W1249843181 @default.
- W3048258161 cites W1516336914 @default.
- W3048258161 cites W1582684391 @default.
- W3048258161 cites W1677796994 @default.
- W3048258161 cites W1973028885 @default.
- W3048258161 cites W1973214009 @default.
- W3048258161 cites W1990907423 @default.
- W3048258161 cites W1993343613 @default.
- W3048258161 cites W1993732771 @default.
- W3048258161 cites W2000957521 @default.
- W3048258161 cites W2006730773 @default.
- W3048258161 cites W2021754455 @default.
- W3048258161 cites W2045125597 @default.
- W3048258161 cites W2052468236 @default.
- W3048258161 cites W2056332637 @default.
- W3048258161 cites W2059056010 @default.
- W3048258161 cites W2064352738 @default.
- W3048258161 cites W2070425795 @default.
- W3048258161 cites W2076696068 @default.
- W3048258161 cites W2079787659 @default.
- W3048258161 cites W2095937683 @default.
- W3048258161 cites W2098722265 @default.
- W3048258161 cites W2106156891 @default.
- W3048258161 cites W2114985804 @default.
- W3048258161 cites W2159759971 @default.
- W3048258161 cites W2167667767 @default.
- W3048258161 cites W2172241964 @default.
- W3048258161 cites W2324524441 @default.
- W3048258161 cites W2340020088 @default.
- W3048258161 cites W2345549752 @default.
- W3048258161 cites W2543665758 @default.
- W3048258161 cites W2752637343 @default.
- W3048258161 cites W2793017519 @default.
- W3048258161 cites W2799548584 @default.
- W3048258161 cites W2801733999 @default.
- W3048258161 cites W2807848408 @default.
- W3048258161 cites W2904424679 @default.
- W3048258161 cites W2919930457 @default.
- W3048258161 cites W2923971785 @default.
- W3048258161 cites W2924094660 @default.
- W3048258161 cites W2943364687 @default.
- W3048258161 cites W2961933561 @default.
- W3048258161 cites W2965652261 @default.
- W3048258161 cites W2978013500 @default.
- W3048258161 cites W2989593066 @default.
- W3048258161 cites W2995364505 @default.
- W3048258161 cites W3005251202 @default.
- W3048258161 cites W3006148482 @default.
- W3048258161 cites W3011916029 @default.
- W3048258161 cites W3037368822 @default.
- W3048258161 cites W4289842641 @default.
- W3048258161 cites W773032868 @default.
- W3048258161 doi "https://doi.org/10.3390/app10165399" @default.
- W3048258161 hasPublicationYear "2020" @default.
- W3048258161 type Work @default.
- W3048258161 sameAs 3048258161 @default.
- W3048258161 citedByCount "6" @default.
- W3048258161 countsByYear W30482581612020 @default.
- W3048258161 countsByYear W30482581612021 @default.
- W3048258161 countsByYear W30482581612022 @default.
- W3048258161 countsByYear W30482581612023 @default.
- W3048258161 crossrefType "journal-article" @default.
- W3048258161 hasAuthorship W3048258161A5003001178 @default.
- W3048258161 hasAuthorship W3048258161A5004345759 @default.
- W3048258161 hasAuthorship W3048258161A5028555717 @default.
- W3048258161 hasBestOaLocation W30482581611 @default.
- W3048258161 hasConcept C120665830 @default.
- W3048258161 hasConcept C121332964 @default.
- W3048258161 hasConcept C150493377 @default.
- W3048258161 hasConcept C151304367 @default.
- W3048258161 hasConcept C154945302 @default.
- W3048258161 hasConcept C159985019 @default.
- W3048258161 hasConcept C185592680 @default.
- W3048258161 hasConcept C189775405 @default.
- W3048258161 hasConcept C192562407 @default.
- W3048258161 hasConcept C31903555 @default.
- W3048258161 hasConcept C32891209 @default.
- W3048258161 hasConcept C33923547 @default.
- W3048258161 hasConcept C41008148 @default.
- W3048258161 hasConcept C43571822 @default.
- W3048258161 hasConcept C43617362 @default.
- W3048258161 hasConcept C49040817 @default.
- W3048258161 hasConcept C62520636 @default.
- W3048258161 hasConcept C88463166 @default.
- W3048258161 hasConceptScore W3048258161C120665830 @default.
- W3048258161 hasConceptScore W3048258161C121332964 @default.
- W3048258161 hasConceptScore W3048258161C150493377 @default.
- W3048258161 hasConceptScore W3048258161C151304367 @default.
- W3048258161 hasConceptScore W3048258161C154945302 @default.