Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048261432> ?p ?o ?g. }
- W3048261432 endingPage "10" @default.
- W3048261432 startingPage "1" @default.
- W3048261432 abstract "Introduction . Hypoxia-induced α ν β 3 integrin and aminopeptidase N (APN/CD13) receptor expression play an important role in tumor neoangiogenesis. APN/CD13-specific 68 Ga-NOTA-c(NGR), α ν β 3 integrin-specific 68 Ga-NODAGA-[c(RGD)] 2 , and hypoxia-specific 68 Ga-DOTA-nitroimidazole enable the in vivo detection of the neoangiogenic process and the hypoxic regions in the tumor mass using positron emission tomography (PET) imaging. The aim of this study was to evaluate whether 68 Ga-NOTA-c(NGR) and 68 Ga-DOTA-nitroimidazole allow the in vivo noninvasive detection of the temporal changes of APN/CD13 expression and hypoxia in experimental He/De tumors using positron emission tomography. Materials and Methods . <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML id=M1><mml:mn>5</mml:mn><mml:mo>×</mml:mo><mml:msup><mml:mrow><mml:mn>10</mml:mn></mml:mrow><mml:mrow><mml:mn>6</mml:mn></mml:mrow></mml:msup></mml:math> hepatocellular carcinoma (He/De) cells were used for the induction of a subcutaneous tumor model in Fischer-344 rats. He/De tumor-bearing animals were anaesthetized, and 90 min after intravenous injection of <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML id=M2><mml:mn>10.2</mml:mn><mml:mo>±</mml:mo><mml:mn>1.1</mml:mn></mml:math> MBq 68 Ga-NOTA-c(NGR) or 68 Ga-NODAGA-[c(RGD)] 2 (as angiogenesis tracers) or 68 Ga-DOTA-nitroimidazole (for hypoxia imaging), whole-body PET/MRI scans were performed. Results . Hypoxic regions and angiogenic markers ( α v β 3 integrin and APN/CD13) were determined using 68 Ga-NOTA-c(NGR), 68 Ga-DOTA-nitroimidazole, and 68 Ga-NODAGA-[c(RGD)] 2 in subcutaneously growing He/De tumors in rats. 68 Ga-NOTA-c(NGR) showed the strong APN/CD13 positivity of He/De tumors in vivo , by which observation was confirmed by western blot analysis. By the qualitative analysis of PET images, heterogenous accumulation was found inside He/De tumors using all radiotracers. Significantly (<mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML id=M3><mml:mi>p</mml:mi><mml:mo>≤</mml:mo><mml:mn>0.01</mml:mn></mml:math>) higher SUVmean and SUVmax values were found in the radiotracer avid regions of the tumors than those of the nonavid areas using hypoxia and angiogenesis-specific radiopharmaceuticals. Furthermore, a strong correlation was found between the presence of angiogenic markers, the appearance of hypoxic regions, and the tumor volume using noninvasive in vivo PET imaging. Conclusion . 68 Ga-DOTA-nitroimidazole and 68 Ga-NOTA-c(NGR) are suitable diagnostic radiotracers for the detection of the temporal changes of hypoxic areas and neoangiogenic molecule (CD13) expression, which vary during tumor growth in a hepatocellular carcinoma model." @default.
- W3048261432 created "2020-08-13" @default.
- W3048261432 creator A5025979113 @default.
- W3048261432 creator A5032135672 @default.
- W3048261432 creator A5040985881 @default.
- W3048261432 creator A5048805985 @default.
- W3048261432 creator A5068492212 @default.
- W3048261432 creator A5072788467 @default.
- W3048261432 creator A5076537762 @default.
- W3048261432 creator A5077890549 @default.
- W3048261432 creator A5079487699 @default.
- W3048261432 creator A5079703139 @default.
- W3048261432 creator A5079755467 @default.
- W3048261432 creator A5080188809 @default.
- W3048261432 creator A5081690721 @default.
- W3048261432 creator A5085849862 @default.
- W3048261432 date "2020-08-07" @default.
- W3048261432 modified "2023-10-18" @default.
- W3048261432 title "<i>In Vivo</i> Imaging of Hypoxia and Neoangiogenesis in Experimental Syngeneic Hepatocellular Carcinoma Tumor Model Using Positron Emission Tomography" @default.
- W3048261432 cites W1977005529 @default.
- W3048261432 cites W1978139448 @default.
- W3048261432 cites W1980036500 @default.
- W3048261432 cites W1980117828 @default.
- W3048261432 cites W1980489760 @default.
- W3048261432 cites W1983195208 @default.
- W3048261432 cites W1989084881 @default.
- W3048261432 cites W1998761071 @default.
- W3048261432 cites W2002109883 @default.
- W3048261432 cites W2006761645 @default.
- W3048261432 cites W2007290556 @default.
- W3048261432 cites W2010018168 @default.
- W3048261432 cites W2020780403 @default.
- W3048261432 cites W2031630601 @default.
- W3048261432 cites W2032347891 @default.
- W3048261432 cites W2064091896 @default.
- W3048261432 cites W2072889522 @default.
- W3048261432 cites W2078793320 @default.
- W3048261432 cites W2080959017 @default.
- W3048261432 cites W2086619383 @default.
- W3048261432 cites W2091996440 @default.
- W3048261432 cites W2097607584 @default.
- W3048261432 cites W2111193887 @default.
- W3048261432 cites W2116531861 @default.
- W3048261432 cites W2124399329 @default.
- W3048261432 cites W2127905380 @default.
- W3048261432 cites W2130522035 @default.
- W3048261432 cites W2134381780 @default.
- W3048261432 cites W2141461971 @default.
- W3048261432 cites W2142316775 @default.
- W3048261432 cites W2155725425 @default.
- W3048261432 cites W2155820414 @default.
- W3048261432 cites W2160664949 @default.
- W3048261432 cites W2168478807 @default.
- W3048261432 cites W2312296163 @default.
- W3048261432 cites W2323389052 @default.
- W3048261432 cites W2331545087 @default.
- W3048261432 cites W2339105850 @default.
- W3048261432 cites W2339312310 @default.
- W3048261432 cites W2467195988 @default.
- W3048261432 cites W2468224059 @default.
- W3048261432 cites W2561586883 @default.
- W3048261432 cites W2580449060 @default.
- W3048261432 cites W274201170 @default.
- W3048261432 cites W2743638877 @default.
- W3048261432 cites W2751201390 @default.
- W3048261432 cites W2767394891 @default.
- W3048261432 cites W2792399009 @default.
- W3048261432 cites W3003604034 @default.
- W3048261432 cites W4250428608 @default.
- W3048261432 cites W48904183 @default.
- W3048261432 doi "https://doi.org/10.1155/2020/4952372" @default.
- W3048261432 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7428931" @default.
- W3048261432 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32832549" @default.
- W3048261432 hasPublicationYear "2020" @default.
- W3048261432 type Work @default.
- W3048261432 sameAs 3048261432 @default.
- W3048261432 citedByCount "5" @default.
- W3048261432 countsByYear W30482614322021 @default.
- W3048261432 countsByYear W30482614322022 @default.
- W3048261432 countsByYear W30482614322023 @default.
- W3048261432 crossrefType "journal-article" @default.
- W3048261432 hasAuthorship W3048261432A5025979113 @default.
- W3048261432 hasAuthorship W3048261432A5032135672 @default.
- W3048261432 hasAuthorship W3048261432A5040985881 @default.
- W3048261432 hasAuthorship W3048261432A5048805985 @default.
- W3048261432 hasAuthorship W3048261432A5068492212 @default.
- W3048261432 hasAuthorship W3048261432A5072788467 @default.
- W3048261432 hasAuthorship W3048261432A5076537762 @default.
- W3048261432 hasAuthorship W3048261432A5077890549 @default.
- W3048261432 hasAuthorship W3048261432A5079487699 @default.
- W3048261432 hasAuthorship W3048261432A5079703139 @default.
- W3048261432 hasAuthorship W3048261432A5079755467 @default.
- W3048261432 hasAuthorship W3048261432A5080188809 @default.
- W3048261432 hasAuthorship W3048261432A5081690721 @default.
- W3048261432 hasAuthorship W3048261432A5085849862 @default.
- W3048261432 hasBestOaLocation W30482614321 @default.
- W3048261432 hasConcept C126838900 @default.
- W3048261432 hasConcept C150903083 @default.