Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048266091> ?p ?o ?g. }
- W3048266091 endingPage "105685" @default.
- W3048266091 startingPage "105685" @default.
- W3048266091 abstract "Background and Objective: One of the main steps in the planning of radiotherapy (RT) is the segmentation of organs at risk (OARs) in Computed Tomography (CT). The esophagus is one of the most difficult OARs to segment. The boundaries between the esophagus and other surrounding tissues are not well-defined, and it is presented in several slices of the CT. Thus, manually segment the esophagus requires a lot of experience and takes time. This difficulty in manual segmentation combined with fatigue due to the number of slices to segment can cause human errors. To address these challenges, computational solutions for analyzing medical images and proposing automated segmentation have been developed and explored in recent years. In this work, we propose a fully automatic method for esophagus segmentation for better planning of radiotherapy in CT. Methods: The proposed method is a fully automated segmentation of the esophagus, consisting of 5 main steps: (a) image acquisition; (b) VOI segmentation; (c) preprocessing; (d) esophagus segmentation; and (e) segmentation refinement. Results: The method was applied in a database of 36 CT acquired from 3 different institutes. It achieved the best results in literature so far: Dice coefficient value of 82.15%, Jaccard Index of 70.21%, accuracy of 99.69%, sensitivity of 90.61%, specificity of 99.76%, and Hausdorff Distance of 6.1030 mm. Conclusions: With the achieved results, we were able to show how promising the method is, and that applying it in large medical centers, where esophagus segmentation is still an arduous and challenging task, can be of great help to the specialists." @default.
- W3048266091 created "2020-08-13" @default.
- W3048266091 creator A5006843849 @default.
- W3048266091 creator A5024460219 @default.
- W3048266091 creator A5031569921 @default.
- W3048266091 creator A5057598901 @default.
- W3048266091 creator A5067856832 @default.
- W3048266091 date "2020-12-01" @default.
- W3048266091 modified "2023-10-15" @default.
- W3048266091 title "Esophagus segmentation from planning CT images using an atlas-based deep learning approach" @default.
- W3048266091 cites W1963623641 @default.
- W3048266091 cites W1987869189 @default.
- W3048266091 cites W2044032707 @default.
- W3048266091 cites W2048250644 @default.
- W3048266091 cites W2055437967 @default.
- W3048266091 cites W2068622559 @default.
- W3048266091 cites W2071574906 @default.
- W3048266091 cites W2086515666 @default.
- W3048266091 cites W2086631544 @default.
- W3048266091 cites W2098385973 @default.
- W3048266091 cites W2142853128 @default.
- W3048266091 cites W2160754664 @default.
- W3048266091 cites W2325870851 @default.
- W3048266091 cites W2592929672 @default.
- W3048266091 cites W2609535107 @default.
- W3048266091 cites W2759084104 @default.
- W3048266091 cites W2766388543 @default.
- W3048266091 cites W2784257876 @default.
- W3048266091 cites W2799452775 @default.
- W3048266091 cites W2888538030 @default.
- W3048266091 cites W2911068672 @default.
- W3048266091 cites W2916412824 @default.
- W3048266091 cites W2920206089 @default.
- W3048266091 cites W2951901661 @default.
- W3048266091 cites W2952855260 @default.
- W3048266091 cites W3043193945 @default.
- W3048266091 doi "https://doi.org/10.1016/j.cmpb.2020.105685" @default.
- W3048266091 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32798976" @default.
- W3048266091 hasPublicationYear "2020" @default.
- W3048266091 type Work @default.
- W3048266091 sameAs 3048266091 @default.
- W3048266091 citedByCount "22" @default.
- W3048266091 countsByYear W30482660912021 @default.
- W3048266091 countsByYear W30482660912022 @default.
- W3048266091 countsByYear W30482660912023 @default.
- W3048266091 crossrefType "journal-article" @default.
- W3048266091 hasAuthorship W3048266091A5006843849 @default.
- W3048266091 hasAuthorship W3048266091A5024460219 @default.
- W3048266091 hasAuthorship W3048266091A5031569921 @default.
- W3048266091 hasAuthorship W3048266091A5057598901 @default.
- W3048266091 hasAuthorship W3048266091A5067856832 @default.
- W3048266091 hasBestOaLocation W30482660912 @default.
- W3048266091 hasConcept C105702510 @default.
- W3048266091 hasConcept C108583219 @default.
- W3048266091 hasConcept C124504099 @default.
- W3048266091 hasConcept C141898687 @default.
- W3048266091 hasConcept C153180895 @default.
- W3048266091 hasConcept C154945302 @default.
- W3048266091 hasConcept C163892561 @default.
- W3048266091 hasConcept C203519979 @default.
- W3048266091 hasConcept C2777819096 @default.
- W3048266091 hasConcept C31972630 @default.
- W3048266091 hasConcept C34736171 @default.
- W3048266091 hasConcept C41008148 @default.
- W3048266091 hasConcept C65885262 @default.
- W3048266091 hasConcept C71924100 @default.
- W3048266091 hasConcept C89600930 @default.
- W3048266091 hasConceptScore W3048266091C105702510 @default.
- W3048266091 hasConceptScore W3048266091C108583219 @default.
- W3048266091 hasConceptScore W3048266091C124504099 @default.
- W3048266091 hasConceptScore W3048266091C141898687 @default.
- W3048266091 hasConceptScore W3048266091C153180895 @default.
- W3048266091 hasConceptScore W3048266091C154945302 @default.
- W3048266091 hasConceptScore W3048266091C163892561 @default.
- W3048266091 hasConceptScore W3048266091C203519979 @default.
- W3048266091 hasConceptScore W3048266091C2777819096 @default.
- W3048266091 hasConceptScore W3048266091C31972630 @default.
- W3048266091 hasConceptScore W3048266091C34736171 @default.
- W3048266091 hasConceptScore W3048266091C41008148 @default.
- W3048266091 hasConceptScore W3048266091C65885262 @default.
- W3048266091 hasConceptScore W3048266091C71924100 @default.
- W3048266091 hasConceptScore W3048266091C89600930 @default.
- W3048266091 hasLocation W30482660911 @default.
- W3048266091 hasLocation W30482660912 @default.
- W3048266091 hasOpenAccess W3048266091 @default.
- W3048266091 hasPrimaryLocation W30482660911 @default.
- W3048266091 hasRelatedWork W2953570019 @default.
- W3048266091 hasRelatedWork W3012828488 @default.
- W3048266091 hasRelatedWork W3116883888 @default.
- W3048266091 hasRelatedWork W3161021928 @default.
- W3048266091 hasRelatedWork W3164075923 @default.
- W3048266091 hasRelatedWork W4280645644 @default.
- W3048266091 hasRelatedWork W4287631720 @default.
- W3048266091 hasRelatedWork W4367019122 @default.
- W3048266091 hasRelatedWork W4368283028 @default.
- W3048266091 hasRelatedWork W4380986815 @default.
- W3048266091 hasVolume "197" @default.
- W3048266091 isParatext "false" @default.