Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048270009> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W3048270009 abstract "Abstract This paper examines the predictive value of peer’s observations of an individual, applied to computational models of certain states of that individual. In a study of 28 days, 13 participants provided self-assessments about their level of stress, fatigue, and anxiety, while their smartphone passively recorded the sensor’s data. Simultaneously, their designated peers provided assessments about the level of stress, fatigue, and anxiety they perceived from the participant using the PeerMA method. We extracted sensor-derived features (sDFs) from the participant’s smartphone, and peer-derived features (pDFs) from the peer’s assessments. We evaluated the pDFs on a binary classification task using three machine learning algorithms (Decision Tree-DT, Random Forest-RF, and Extreme Gradient Boosting-XGB). As a result, the classification accuracy consistently increased when the algorithms were trained with the sDFs plus the pDFs, compared the tradition of using only the sDFs. More importantly, the classification accuracy was the highest when we trained the algorithms only with the pDFs (73.3% DT, 73.7% RF, and 71.1% XGB), which represents a unique contribution of this paper. The findings are encouraging about the incorporation of peer’s observations in machine learning with potential benefits in the fields of personal sensing and pervasive computing, especially for mental health and well-being." @default.
- W3048270009 created "2020-08-13" @default.
- W3048270009 creator A5014459921 @default.
- W3048270009 creator A5071043017 @default.
- W3048270009 date "2020-01-01" @default.
- W3048270009 modified "2023-10-16" @default.
- W3048270009 title "Peers Know You: A Feasibility Study of the Predictive Value of Peer’s Observations to Estimate Human States" @default.
- W3048270009 cites W1790118405 @default.
- W3048270009 cites W1964022961 @default.
- W3048270009 cites W1975537817 @default.
- W3048270009 cites W1975568461 @default.
- W3048270009 cites W1978460036 @default.
- W3048270009 cites W2012987881 @default.
- W3048270009 cites W2032512569 @default.
- W3048270009 cites W2069140372 @default.
- W3048270009 cites W2087171058 @default.
- W3048270009 cites W2125740016 @default.
- W3048270009 cites W2135896609 @default.
- W3048270009 cites W2505400317 @default.
- W3048270009 cites W2516086211 @default.
- W3048270009 cites W2519880364 @default.
- W3048270009 cites W2520441859 @default.
- W3048270009 cites W2559181347 @default.
- W3048270009 cites W2605108175 @default.
- W3048270009 cites W2753518399 @default.
- W3048270009 cites W2776017876 @default.
- W3048270009 cites W2797009188 @default.
- W3048270009 cites W2905901805 @default.
- W3048270009 cites W3024272585 @default.
- W3048270009 cites W3048253695 @default.
- W3048270009 cites W4248022857 @default.
- W3048270009 doi "https://doi.org/10.1016/j.procs.2020.07.031" @default.
- W3048270009 hasPublicationYear "2020" @default.
- W3048270009 type Work @default.
- W3048270009 sameAs 3048270009 @default.
- W3048270009 citedByCount "1" @default.
- W3048270009 countsByYear W30482700092020 @default.
- W3048270009 crossrefType "journal-article" @default.
- W3048270009 hasAuthorship W3048270009A5014459921 @default.
- W3048270009 hasAuthorship W3048270009A5071043017 @default.
- W3048270009 hasBestOaLocation W30482700091 @default.
- W3048270009 hasConcept C118552586 @default.
- W3048270009 hasConcept C119857082 @default.
- W3048270009 hasConcept C12267149 @default.
- W3048270009 hasConcept C154945302 @default.
- W3048270009 hasConcept C15744967 @default.
- W3048270009 hasConcept C162324750 @default.
- W3048270009 hasConcept C169258074 @default.
- W3048270009 hasConcept C187736073 @default.
- W3048270009 hasConcept C2780451532 @default.
- W3048270009 hasConcept C41008148 @default.
- W3048270009 hasConcept C46686674 @default.
- W3048270009 hasConcept C558461103 @default.
- W3048270009 hasConcept C66905080 @default.
- W3048270009 hasConcept C84525736 @default.
- W3048270009 hasConceptScore W3048270009C118552586 @default.
- W3048270009 hasConceptScore W3048270009C119857082 @default.
- W3048270009 hasConceptScore W3048270009C12267149 @default.
- W3048270009 hasConceptScore W3048270009C154945302 @default.
- W3048270009 hasConceptScore W3048270009C15744967 @default.
- W3048270009 hasConceptScore W3048270009C162324750 @default.
- W3048270009 hasConceptScore W3048270009C169258074 @default.
- W3048270009 hasConceptScore W3048270009C187736073 @default.
- W3048270009 hasConceptScore W3048270009C2780451532 @default.
- W3048270009 hasConceptScore W3048270009C41008148 @default.
- W3048270009 hasConceptScore W3048270009C46686674 @default.
- W3048270009 hasConceptScore W3048270009C558461103 @default.
- W3048270009 hasConceptScore W3048270009C66905080 @default.
- W3048270009 hasConceptScore W3048270009C84525736 @default.
- W3048270009 hasLocation W30482700091 @default.
- W3048270009 hasLocation W30482700092 @default.
- W3048270009 hasOpenAccess W3048270009 @default.
- W3048270009 hasPrimaryLocation W30482700091 @default.
- W3048270009 hasRelatedWork W10715555 @default.
- W3048270009 hasRelatedWork W12010550 @default.
- W3048270009 hasRelatedWork W12829258 @default.
- W3048270009 hasRelatedWork W13188192 @default.
- W3048270009 hasRelatedWork W13451536 @default.
- W3048270009 hasRelatedWork W14430987 @default.
- W3048270009 hasRelatedWork W5683847 @default.
- W3048270009 hasRelatedWork W8683420 @default.
- W3048270009 hasRelatedWork W9481221 @default.
- W3048270009 hasRelatedWork W9686548 @default.
- W3048270009 isParatext "false" @default.
- W3048270009 isRetracted "false" @default.
- W3048270009 magId "3048270009" @default.
- W3048270009 workType "article" @default.