Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048273689> ?p ?o ?g. }
Showing items 1 to 59 of
59
with 100 items per page.
- W3048273689 abstract "In this paper we revisit the so-called computation rules for calculus using a single nonassociative binary operation over possibly infinite sequences of integers. In this paper we focus on the maximum that is an extension of the usual maximum ∨ so that 0 is the neutral element, and −x is the (or inverse) of x, i.e., x (−x) = 0. However, such an extension does not preserve the associativity of ∨. This fact asks for systematic ways of bracketing terms of a sequence using , and which we refer to as computation rules. These computation rules essentially reduce to deleting terms of sequences based on the condition x (−x) = 0, and they can be quasi-ordered as follows: say that rule 1 is below rule 2 if for all sequences of numbers, rule 1 deletes more terms in the sequence than rule 2. As it turns out, this quasi-ordered set is extremely complex, e.g., it has infinitely many maximal elements and atoms, and it embeds the powerset of natural numbers by inclusion. Local properties of computation rules have also been presented by the authors, in particular, concerning their canonical representations. In this paper we address the problem of determining those computation rules that preserve the monotonicity of ∨, and present an explicit description of mono-tonic computation rules in terms of their factorized irredundant form. 1 Motivation This short contribution is the continuation of the work initiated in [1, 2], and we refer the reader to these references for further motivation. Let L be a totally ordered set with bottom element 0, and let −L := {−a : a ∈ L} be its symmetric copy endowed with the reversed order. Consider the ordered structureL := L ∪ (−L) {−0}, a bipolar scale analogous to the real line where the zero acts as a neutral element and such that a + (−a) = 0 (symmetry). In particular, −(−a) = a. The maximum is intended to extend the maximum on L with 0 as neutral element, while fulfilling symmetry. However, this symmetry requirement immediately entails that any extension of the maximum operator ∨ cannot be associative. To illustrate this point, let L = N and observe that (2 3) (−3) = 3 (−3) = 0 whereas 2 (3 (−3)) = 2 0 = 2. Nonetheless, Grabisch [3] showed that the best definition of (see Theorem 1 below) is: a b = −(|a| ∨ |b|) if b = −a and |a| ∨ |b| = −a or = −b 0 if b = −a |a| ∨ |b| otherwise. (1) In other words, if b = −a, then a b returns the element that is the larger in absolute value among the two elements a and b. Moreover, it is not difficult to see that satisfies the following properties:" @default.
- W3048273689 created "2020-08-13" @default.
- W3048273689 creator A5034398981 @default.
- W3048273689 creator A5066732273 @default.
- W3048273689 date "2020-08-26" @default.
- W3048273689 modified "2023-10-16" @default.
- W3048273689 title "Monotonic computation rules for nonassociative calculus" @default.
- W3048273689 cites W1653410487 @default.
- W3048273689 cites W2003153132 @default.
- W3048273689 cites W2570512523 @default.
- W3048273689 hasPublicationYear "2020" @default.
- W3048273689 type Work @default.
- W3048273689 sameAs 3048273689 @default.
- W3048273689 citedByCount "0" @default.
- W3048273689 crossrefType "proceedings-article" @default.
- W3048273689 hasAuthorship W3048273689A5034398981 @default.
- W3048273689 hasAuthorship W3048273689A5066732273 @default.
- W3048273689 hasBestOaLocation W30482736891 @default.
- W3048273689 hasConcept C11413529 @default.
- W3048273689 hasConcept C134306372 @default.
- W3048273689 hasConcept C136119220 @default.
- W3048273689 hasConcept C199343813 @default.
- W3048273689 hasConcept C202444582 @default.
- W3048273689 hasConcept C2777686260 @default.
- W3048273689 hasConcept C33923547 @default.
- W3048273689 hasConcept C41008148 @default.
- W3048273689 hasConcept C45374587 @default.
- W3048273689 hasConcept C71924100 @default.
- W3048273689 hasConcept C72169020 @default.
- W3048273689 hasConceptScore W3048273689C11413529 @default.
- W3048273689 hasConceptScore W3048273689C134306372 @default.
- W3048273689 hasConceptScore W3048273689C136119220 @default.
- W3048273689 hasConceptScore W3048273689C199343813 @default.
- W3048273689 hasConceptScore W3048273689C202444582 @default.
- W3048273689 hasConceptScore W3048273689C2777686260 @default.
- W3048273689 hasConceptScore W3048273689C33923547 @default.
- W3048273689 hasConceptScore W3048273689C41008148 @default.
- W3048273689 hasConceptScore W3048273689C45374587 @default.
- W3048273689 hasConceptScore W3048273689C71924100 @default.
- W3048273689 hasConceptScore W3048273689C72169020 @default.
- W3048273689 hasLocation W30482736891 @default.
- W3048273689 hasLocation W30482736892 @default.
- W3048273689 hasLocation W30482736893 @default.
- W3048273689 hasOpenAccess W3048273689 @default.
- W3048273689 hasPrimaryLocation W30482736891 @default.
- W3048273689 hasRelatedWork W1598512197 @default.
- W3048273689 hasRelatedWork W1984201912 @default.
- W3048273689 hasRelatedWork W2014538672 @default.
- W3048273689 hasRelatedWork W2047643146 @default.
- W3048273689 hasRelatedWork W2050668358 @default.
- W3048273689 hasRelatedWork W2053474327 @default.
- W3048273689 hasRelatedWork W2080268478 @default.
- W3048273689 hasRelatedWork W2103415714 @default.
- W3048273689 hasRelatedWork W2131748347 @default.
- W3048273689 hasRelatedWork W2889728348 @default.
- W3048273689 isParatext "false" @default.
- W3048273689 isRetracted "false" @default.
- W3048273689 magId "3048273689" @default.
- W3048273689 workType "article" @default.