Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048282123> ?p ?o ?g. }
- W3048282123 abstract "Abstract Although using machine learning techniques to solve computer security challenges is not a new idea, the rapidly emerging Deep Learning technology has recently triggered a substantial amount of interests in the computer security community. This paper seeks to provide a dedicated review of the very recent research works on using Deep Learning techniques to solve computer security challenges. In particular, the review covers eight computer security problems being solved by applications of Deep Learning: security-oriented program analysis, defending return-oriented programming (ROP) attacks, achieving control-flow integrity (CFI), defending network attacks, malware classification, system-event-based anomaly detection, memory forensics, and fuzzing for software security." @default.
- W3048282123 created "2020-08-13" @default.
- W3048282123 creator A5003547177 @default.
- W3048282123 creator A5018814025 @default.
- W3048282123 creator A5028632274 @default.
- W3048282123 creator A5032173201 @default.
- W3048282123 creator A5054208326 @default.
- W3048282123 creator A5056068917 @default.
- W3048282123 creator A5058926362 @default.
- W3048282123 creator A5059551914 @default.
- W3048282123 date "2020-08-10" @default.
- W3048282123 modified "2023-09-30" @default.
- W3048282123 title "Using deep learning to solve computer security challenges: a survey" @default.
- W3048282123 cites W1666731339 @default.
- W3048282123 cites W1893133781 @default.
- W3048282123 cites W1966948031 @default.
- W3048282123 cites W1985987493 @default.
- W3048282123 cites W1990053053 @default.
- W3048282123 cites W2039157918 @default.
- W3048282123 cites W2107510936 @default.
- W3048282123 cites W2149086123 @default.
- W3048282123 cites W2159059513 @default.
- W3048282123 cites W2162800072 @default.
- W3048282123 cites W2163922914 @default.
- W3048282123 cites W2296509296 @default.
- W3048282123 cites W2574017551 @default.
- W3048282123 cites W2583649498 @default.
- W3048282123 cites W2583874385 @default.
- W3048282123 cites W2599823825 @default.
- W3048282123 cites W2625013748 @default.
- W3048282123 cites W2729350029 @default.
- W3048282123 cites W2745604838 @default.
- W3048282123 cites W2745980806 @default.
- W3048282123 cites W2762776925 @default.
- W3048282123 cites W2765192396 @default.
- W3048282123 cites W2776884785 @default.
- W3048282123 cites W2792672492 @default.
- W3048282123 cites W2795033129 @default.
- W3048282123 cites W2796394805 @default.
- W3048282123 cites W2806377938 @default.
- W3048282123 cites W2808242862 @default.
- W3048282123 cites W2890991187 @default.
- W3048282123 cites W2893466632 @default.
- W3048282123 cites W2894211014 @default.
- W3048282123 cites W2904399224 @default.
- W3048282123 cites W2940243450 @default.
- W3048282123 cites W2944643572 @default.
- W3048282123 cites W2950124051 @default.
- W3048282123 cites W2962832406 @default.
- W3048282123 cites W2963064278 @default.
- W3048282123 cites W2964205113 @default.
- W3048282123 cites W2965481252 @default.
- W3048282123 cites W2965838158 @default.
- W3048282123 cites W2970528944 @default.
- W3048282123 cites W2970532778 @default.
- W3048282123 cites W3105926539 @default.
- W3048282123 doi "https://doi.org/10.1186/s42400-020-00055-5" @default.
- W3048282123 hasPublicationYear "2020" @default.
- W3048282123 type Work @default.
- W3048282123 sameAs 3048282123 @default.
- W3048282123 citedByCount "17" @default.
- W3048282123 countsByYear W30482821232020 @default.
- W3048282123 countsByYear W30482821232021 @default.
- W3048282123 countsByYear W30482821232022 @default.
- W3048282123 countsByYear W30482821232023 @default.
- W3048282123 crossrefType "journal-article" @default.
- W3048282123 hasAuthorship W3048282123A5003547177 @default.
- W3048282123 hasAuthorship W3048282123A5018814025 @default.
- W3048282123 hasAuthorship W3048282123A5028632274 @default.
- W3048282123 hasAuthorship W3048282123A5032173201 @default.
- W3048282123 hasAuthorship W3048282123A5054208326 @default.
- W3048282123 hasAuthorship W3048282123A5056068917 @default.
- W3048282123 hasAuthorship W3048282123A5058926362 @default.
- W3048282123 hasAuthorship W3048282123A5059551914 @default.
- W3048282123 hasBestOaLocation W30482821231 @default.
- W3048282123 hasConcept C108583219 @default.
- W3048282123 hasConcept C111065885 @default.
- W3048282123 hasConcept C111919701 @default.
- W3048282123 hasConcept C121822524 @default.
- W3048282123 hasConcept C154945302 @default.
- W3048282123 hasConcept C182590292 @default.
- W3048282123 hasConcept C2777904410 @default.
- W3048282123 hasConcept C29983905 @default.
- W3048282123 hasConcept C38652104 @default.
- W3048282123 hasConcept C41008148 @default.
- W3048282123 hasConcept C527648132 @default.
- W3048282123 hasConcept C541664917 @default.
- W3048282123 hasConcept C62913178 @default.
- W3048282123 hasConcept C739882 @default.
- W3048282123 hasConceptScore W3048282123C108583219 @default.
- W3048282123 hasConceptScore W3048282123C111065885 @default.
- W3048282123 hasConceptScore W3048282123C111919701 @default.
- W3048282123 hasConceptScore W3048282123C121822524 @default.
- W3048282123 hasConceptScore W3048282123C154945302 @default.
- W3048282123 hasConceptScore W3048282123C182590292 @default.
- W3048282123 hasConceptScore W3048282123C2777904410 @default.
- W3048282123 hasConceptScore W3048282123C29983905 @default.
- W3048282123 hasConceptScore W3048282123C38652104 @default.
- W3048282123 hasConceptScore W3048282123C41008148 @default.
- W3048282123 hasConceptScore W3048282123C527648132 @default.