Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048283644> ?p ?o ?g. }
- W3048283644 endingPage "147014" @default.
- W3048283644 startingPage "146994" @default.
- W3048283644 abstract "Despite an increasing consensus regarding the significance of properly identifying the most suitable clustering method for a given problem, a surprising amount of educational research, including both educational data mining (EDM) and learning analytics (LA), neglects this critical task. This shortcoming could in many cases have a negative impact on the prediction power of both the EDM and LA based approaches. To address such issues, this work proposes an evaluation approach that automatically compares several clustering methods using multiple internal and external performance measures on 9 real-world educational datasets of different sizes, created from the University of Tartu's Moodle system, to produce two-way clustering. Moreover, to investigate the possible effect of normalization on the performance of the clustering algorithms, this work performs the same experiment on a normalized version of the datasets. Since such an exhaustive evaluation includes multiple criteria, the proposed approach employs a multiple criteria decision-making method (i.e., TOPSIS) to rank the most suitable methods for each dataset. Our results reveal that the proposed approach can automatically compare the performance of the clustering methods and accordingly recommend the most suitable method for each dataset. Furthermore, our results show that in both normalized and nonnormalized datasets of different sizes with 10 features, DBSCAN and k-medoids are the best clustering methods, whereas agglomerative and spectral methods appear to be among the most stable and highly performing clustering methods for such datasets with 15 features. Regarding datasets with more than 15 features, OPTICS is among the top-ranked algorithms among the nonnormalized datasets, and k-medoids is the best among the normalized datasets. Interestingly, our findings reveal that normalization may have a negative effect on the performance of certain methods, e.g., spectral clustering and OPTICS; however, it appears to mostly have a positive impact on all of the other clustering methods." @default.
- W3048283644 created "2020-08-13" @default.
- W3048283644 creator A5011435561 @default.
- W3048283644 creator A5018316748 @default.
- W3048283644 creator A5022497662 @default.
- W3048283644 creator A5039916308 @default.
- W3048283644 date "2020-01-01" @default.
- W3048283644 modified "2023-10-05" @default.
- W3048283644 title "Clustering Algorithms in an Educational Context: An Automatic Comparative Approach" @default.
- W3048283644 cites W1569653074 @default.
- W3048283644 cites W1783384641 @default.
- W3048283644 cites W1820941567 @default.
- W3048283644 cites W1930888825 @default.
- W3048283644 cites W1964346230 @default.
- W3048283644 cites W1966644670 @default.
- W3048283644 cites W1971022913 @default.
- W3048283644 cites W1985690171 @default.
- W3048283644 cites W1992419399 @default.
- W3048283644 cites W1999552719 @default.
- W3048283644 cites W2011430131 @default.
- W3048283644 cites W2027711578 @default.
- W3048283644 cites W2030391296 @default.
- W3048283644 cites W2035890032 @default.
- W3048283644 cites W2039379472 @default.
- W3048283644 cites W2047555270 @default.
- W3048283644 cites W2051627038 @default.
- W3048283644 cites W2057923756 @default.
- W3048283644 cites W2070771945 @default.
- W3048283644 cites W2079777076 @default.
- W3048283644 cites W2083620785 @default.
- W3048283644 cites W2096759677 @default.
- W3048283644 cites W2108323654 @default.
- W3048283644 cites W2111859924 @default.
- W3048283644 cites W2113586398 @default.
- W3048283644 cites W2114003275 @default.
- W3048283644 cites W2125070513 @default.
- W3048283644 cites W2129066856 @default.
- W3048283644 cites W2132914434 @default.
- W3048283644 cites W2133707124 @default.
- W3048283644 cites W2145290337 @default.
- W3048283644 cites W2159237780 @default.
- W3048283644 cites W2160642098 @default.
- W3048283644 cites W2170584976 @default.
- W3048283644 cites W2322147977 @default.
- W3048283644 cites W2513567506 @default.
- W3048283644 cites W2572386335 @default.
- W3048283644 cites W2746333715 @default.
- W3048283644 cites W2767493667 @default.
- W3048283644 cites W2774676697 @default.
- W3048283644 cites W2790707267 @default.
- W3048283644 cites W2809525873 @default.
- W3048283644 cites W2963143614 @default.
- W3048283644 cites W2963174546 @default.
- W3048283644 cites W2964087164 @default.
- W3048283644 cites W2994613842 @default.
- W3048283644 cites W3098951089 @default.
- W3048283644 cites W3150478326 @default.
- W3048283644 cites W38708963 @default.
- W3048283644 cites W4239330706 @default.
- W3048283644 cites W4298236029 @default.
- W3048283644 doi "https://doi.org/10.1109/access.2020.3014948" @default.
- W3048283644 hasPublicationYear "2020" @default.
- W3048283644 type Work @default.
- W3048283644 sameAs 3048283644 @default.
- W3048283644 citedByCount "7" @default.
- W3048283644 countsByYear W30482836442021 @default.
- W3048283644 countsByYear W30482836442022 @default.
- W3048283644 countsByYear W30482836442023 @default.
- W3048283644 crossrefType "journal-article" @default.
- W3048283644 hasAuthorship W3048283644A5011435561 @default.
- W3048283644 hasAuthorship W3048283644A5018316748 @default.
- W3048283644 hasAuthorship W3048283644A5022497662 @default.
- W3048283644 hasAuthorship W3048283644A5039916308 @default.
- W3048283644 hasBestOaLocation W30482836441 @default.
- W3048283644 hasConcept C104047586 @default.
- W3048283644 hasConcept C119857082 @default.
- W3048283644 hasConcept C124101348 @default.
- W3048283644 hasConcept C136886441 @default.
- W3048283644 hasConcept C144024400 @default.
- W3048283644 hasConcept C151730666 @default.
- W3048283644 hasConcept C154945302 @default.
- W3048283644 hasConcept C19165224 @default.
- W3048283644 hasConcept C2779343474 @default.
- W3048283644 hasConcept C33704608 @default.
- W3048283644 hasConcept C41008148 @default.
- W3048283644 hasConcept C46576248 @default.
- W3048283644 hasConcept C73555534 @default.
- W3048283644 hasConcept C86803240 @default.
- W3048283644 hasConcept C94641424 @default.
- W3048283644 hasConceptScore W3048283644C104047586 @default.
- W3048283644 hasConceptScore W3048283644C119857082 @default.
- W3048283644 hasConceptScore W3048283644C124101348 @default.
- W3048283644 hasConceptScore W3048283644C136886441 @default.
- W3048283644 hasConceptScore W3048283644C144024400 @default.
- W3048283644 hasConceptScore W3048283644C151730666 @default.
- W3048283644 hasConceptScore W3048283644C154945302 @default.
- W3048283644 hasConceptScore W3048283644C19165224 @default.
- W3048283644 hasConceptScore W3048283644C2779343474 @default.