Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048293652> ?p ?o ?g. }
- W3048293652 endingPage "1589" @default.
- W3048293652 startingPage "1575" @default.
- W3048293652 abstract "In a dynamic environment, moving to the destination safely and effectively is of paramount importance for an unmanned ground vehicle (UGV). This article presents a strategy of trajectory planning and tracking that aims to ensure the UGV’s safety in an uncertain environment. Specifically, based on the initial environment information, a global optimal trajectory connecting the start and the destination is predefined by an artificial fish swarm algorithm (AFSA). In the presence of unforeseen obstacles, a trial-based forward search (TFS) algorithm based on the Markov chain is proposed in the local trajectory planning module, while collision prediction is integrated as heuristic information. The vehicle’s current state is updated accordingly for the sake of avoiding entire state spaces involved in the computation. Therefore, the storage efficiency and convergence rate in local path planning are sufficiently enhanced in comparison to dynamic programming. Moreover, command signals can be calculated with the proposed multiconstrained model predictive controller (MMPC), ensuring the vehicle to track the reference trajectory and smoothen the motion. Finally, the results in both simulations and experiments reveal the effectiveness of the proposed algorithm in the presence of both static and dynamic obstacles. <italic xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>Note to Practitioners</i> —This article is motivated by the unmanned ground vehicle (UGV) collision avoidance problem in practical missions, such as farming and emergency response. In recent years, various trajectory planning and tracking algorithms have been widely developed. However, the environmental complexity and the intruders’ unexpected movement pose difficulties in trajectory planning, especially in ensuring the computation time under the allowable threshold. Moreover, the UGV practical trajectory tracking is a challenging task which demands a desired response within various physical constraints. In this article, a two-stage conflict resolution system is proposed. First, a trial-based forward search (TFS) is used to generate a new trajectory deviating the UGV from the initially generated trajectory by the artificial fish swarm algorithm (AFSA), aiming to avoid the unforeseen intruders (unknown in prior) in real-time. Using these two trajectory planning algorithms alternatively, both global trajectory optimality in a cluttered environment and appropriate maneuvers with respect to unexpected intruders can be achieved. Subsequently, the UGV is modeled according to its kinematic characteristics, and thus a multiconstrained model predictive controller (MMPC) is designed to follow the reference trajectory. The physical constraints are respected by integrating them into the controller. Simulations and experimental results demonstrate that the proposed strategy can guide and control a UGV from the start to the destination safely and smoothly, even in the case of multiple obstacles with constant or varying velocities. Furthermore, the proposed collision avoidance strategy can be extended to other unmanned systems, including unmanned aerial vehicles and unmanned surface vehicles." @default.
- W3048293652 created "2020-08-13" @default.
- W3048293652 creator A5025122240 @default.
- W3048293652 creator A5037777052 @default.
- W3048293652 creator A5061379171 @default.
- W3048293652 creator A5084857817 @default.
- W3048293652 creator A5085853130 @default.
- W3048293652 date "2021-10-01" @default.
- W3048293652 modified "2023-10-15" @default.
- W3048293652 title "Trajectory Planning and Tracking Strategy Applied to an Unmanned Ground Vehicle in the Presence of Obstacles" @default.
- W3048293652 cites W1610994738 @default.
- W3048293652 cites W1968103386 @default.
- W3048293652 cites W1972047326 @default.
- W3048293652 cites W1978447895 @default.
- W3048293652 cites W1978956894 @default.
- W3048293652 cites W1987124340 @default.
- W3048293652 cites W1991877770 @default.
- W3048293652 cites W2004094350 @default.
- W3048293652 cites W2006619020 @default.
- W3048293652 cites W2010570954 @default.
- W3048293652 cites W2011383002 @default.
- W3048293652 cites W2013022428 @default.
- W3048293652 cites W2036021531 @default.
- W3048293652 cites W2037661888 @default.
- W3048293652 cites W2042752297 @default.
- W3048293652 cites W2044341605 @default.
- W3048293652 cites W2045001586 @default.
- W3048293652 cites W2045495451 @default.
- W3048293652 cites W2050673413 @default.
- W3048293652 cites W2121762861 @default.
- W3048293652 cites W2124651605 @default.
- W3048293652 cites W2127911678 @default.
- W3048293652 cites W2168309003 @default.
- W3048293652 cites W2175593282 @default.
- W3048293652 cites W2262531625 @default.
- W3048293652 cites W2289016861 @default.
- W3048293652 cites W2333357315 @default.
- W3048293652 cites W2341848647 @default.
- W3048293652 cites W2537681901 @default.
- W3048293652 cites W2744743129 @default.
- W3048293652 cites W2793777304 @default.
- W3048293652 cites W2793901471 @default.
- W3048293652 cites W2806863919 @default.
- W3048293652 cites W2888461790 @default.
- W3048293652 cites W2891636475 @default.
- W3048293652 cites W2893322488 @default.
- W3048293652 cites W2896020837 @default.
- W3048293652 cites W2896500468 @default.
- W3048293652 cites W2898681220 @default.
- W3048293652 cites W2899005021 @default.
- W3048293652 cites W2902731060 @default.
- W3048293652 cites W2903253065 @default.
- W3048293652 cites W2903617107 @default.
- W3048293652 cites W2906415336 @default.
- W3048293652 cites W2912361519 @default.
- W3048293652 cites W2990179116 @default.
- W3048293652 doi "https://doi.org/10.1109/tase.2020.3010887" @default.
- W3048293652 hasPublicationYear "2021" @default.
- W3048293652 type Work @default.
- W3048293652 sameAs 3048293652 @default.
- W3048293652 citedByCount "31" @default.
- W3048293652 countsByYear W30482936522020 @default.
- W3048293652 countsByYear W30482936522021 @default.
- W3048293652 countsByYear W30482936522022 @default.
- W3048293652 countsByYear W30482936522023 @default.
- W3048293652 crossrefType "journal-article" @default.
- W3048293652 hasAuthorship W3048293652A5025122240 @default.
- W3048293652 hasAuthorship W3048293652A5037777052 @default.
- W3048293652 hasAuthorship W3048293652A5061379171 @default.
- W3048293652 hasAuthorship W3048293652A5084857817 @default.
- W3048293652 hasAuthorship W3048293652A5085853130 @default.
- W3048293652 hasConcept C121332964 @default.
- W3048293652 hasConcept C1276947 @default.
- W3048293652 hasConcept C13662910 @default.
- W3048293652 hasConcept C154945302 @default.
- W3048293652 hasConcept C162324750 @default.
- W3048293652 hasConcept C173801870 @default.
- W3048293652 hasConcept C181335050 @default.
- W3048293652 hasConcept C203479927 @default.
- W3048293652 hasConcept C2776548393 @default.
- W3048293652 hasConcept C2777303404 @default.
- W3048293652 hasConcept C41008148 @default.
- W3048293652 hasConcept C50522688 @default.
- W3048293652 hasConcept C6557445 @default.
- W3048293652 hasConcept C79403827 @default.
- W3048293652 hasConcept C81074085 @default.
- W3048293652 hasConcept C86803240 @default.
- W3048293652 hasConcept C90509273 @default.
- W3048293652 hasConceptScore W3048293652C121332964 @default.
- W3048293652 hasConceptScore W3048293652C1276947 @default.
- W3048293652 hasConceptScore W3048293652C13662910 @default.
- W3048293652 hasConceptScore W3048293652C154945302 @default.
- W3048293652 hasConceptScore W3048293652C162324750 @default.
- W3048293652 hasConceptScore W3048293652C173801870 @default.
- W3048293652 hasConceptScore W3048293652C181335050 @default.
- W3048293652 hasConceptScore W3048293652C203479927 @default.
- W3048293652 hasConceptScore W3048293652C2776548393 @default.
- W3048293652 hasConceptScore W3048293652C2777303404 @default.