Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048295601> ?p ?o ?g. }
- W3048295601 endingPage "1069" @default.
- W3048295601 startingPage "1055" @default.
- W3048295601 abstract "Unmanned aerial vehicles (UAVs) combined with artificial intelligence (AI) have opened a revolutionized way for mobile crowdsensing (MCS). Conventional AI models, built on aggregation of UAVs’ sensing data (typically contain private and sensitive user information), may arise severe privacy and data misuse concerns. Federated learning, as a promising distributed AI paradigm, has opened up possibilities for UAVs to collaboratively train a shared global model without revealing their local sensing data. However, there still exist potential security and privacy threats for UAV-assisted crowdsensing with federated learning due to vulnerability of central curator, unreliable contribution recording, and low-quality shared local models. In this paper, we propose SFAC, a s ecure f ederated learning framework for U A V-assisted M C S. Specifically, we first introduce a blockchain-based collaborative learning architecture for UAVs to securely exchange local model updates and verify contributions without the central curator. Then, by applying local differential privacy, we design a privacy-preserving algorithm to protect UAVs’ privacy of updated local models with desirable learning accuracy. Furthermore, a two-tier reinforcement learning-based incentive mechanism is exploited to promote UAVs’ high-quality model sharing when explicit knowledge of network parameters are not available in practice. Extensive simulations are conducted, and the results demonstrate that the proposed SFAC can effectively improve utilities for UAVs, promote high-quality model sharing, and ensure privacy protection in federated learning, compared with existing schemes." @default.
- W3048295601 created "2020-08-13" @default.
- W3048295601 creator A5003187898 @default.
- W3048295601 creator A5060341203 @default.
- W3048295601 creator A5066407180 @default.
- W3048295601 creator A5069739048 @default.
- W3048295601 date "2021-04-01" @default.
- W3048295601 modified "2023-10-15" @default.
- W3048295601 title "Learning in the Air: Secure Federated Learning for UAV-Assisted Crowdsensing" @default.
- W3048295601 cites W2010069223 @default.
- W3048295601 cites W2275408081 @default.
- W3048295601 cites W2407898405 @default.
- W3048295601 cites W2570263810 @default.
- W3048295601 cites W2591281206 @default.
- W3048295601 cites W2604436698 @default.
- W3048295601 cites W2771655311 @default.
- W3048295601 cites W2773423866 @default.
- W3048295601 cites W2790670692 @default.
- W3048295601 cites W2797090510 @default.
- W3048295601 cites W2883059862 @default.
- W3048295601 cites W2883880986 @default.
- W3048295601 cites W2887817291 @default.
- W3048295601 cites W2889545858 @default.
- W3048295601 cites W2899478246 @default.
- W3048295601 cites W2902160827 @default.
- W3048295601 cites W2908537295 @default.
- W3048295601 cites W2919467785 @default.
- W3048295601 cites W2920095265 @default.
- W3048295601 cites W2922407904 @default.
- W3048295601 cites W2931548779 @default.
- W3048295601 cites W2943584607 @default.
- W3048295601 cites W2951832089 @default.
- W3048295601 cites W2963318081 @default.
- W3048295601 cites W2963403391 @default.
- W3048295601 cites W2963540401 @default.
- W3048295601 cites W2966935339 @default.
- W3048295601 cites W2972882814 @default.
- W3048295601 cites W2974175488 @default.
- W3048295601 cites W2976008907 @default.
- W3048295601 cites W2976695157 @default.
- W3048295601 cites W2977797911 @default.
- W3048295601 cites W2979680647 @default.
- W3048295601 cites W2981187527 @default.
- W3048295601 cites W2983935921 @default.
- W3048295601 cites W2984693664 @default.
- W3048295601 cites W2985168655 @default.
- W3048295601 cites W2991236681 @default.
- W3048295601 cites W2992964660 @default.
- W3048295601 cites W2998186469 @default.
- W3048295601 cites W3001989995 @default.
- W3048295601 cites W3006541201 @default.
- W3048295601 cites W3009925165 @default.
- W3048295601 cites W3011132155 @default.
- W3048295601 cites W3011146004 @default.
- W3048295601 cites W3011665186 @default.
- W3048295601 cites W3011995057 @default.
- W3048295601 cites W3013238231 @default.
- W3048295601 cites W3048314935 @default.
- W3048295601 cites W3048347984 @default.
- W3048295601 cites W3107650027 @default.
- W3048295601 doi "https://doi.org/10.1109/tnse.2020.3014385" @default.
- W3048295601 hasPublicationYear "2021" @default.
- W3048295601 type Work @default.
- W3048295601 sameAs 3048295601 @default.
- W3048295601 citedByCount "89" @default.
- W3048295601 countsByYear W30482956012020 @default.
- W3048295601 countsByYear W30482956012021 @default.
- W3048295601 countsByYear W30482956012022 @default.
- W3048295601 countsByYear W30482956012023 @default.
- W3048295601 crossrefType "journal-article" @default.
- W3048295601 hasAuthorship W3048295601A5003187898 @default.
- W3048295601 hasAuthorship W3048295601A5060341203 @default.
- W3048295601 hasAuthorship W3048295601A5066407180 @default.
- W3048295601 hasAuthorship W3048295601A5069739048 @default.
- W3048295601 hasConcept C2780821482 @default.
- W3048295601 hasConcept C38652104 @default.
- W3048295601 hasConcept C41008148 @default.
- W3048295601 hasConceptScore W3048295601C2780821482 @default.
- W3048295601 hasConceptScore W3048295601C38652104 @default.
- W3048295601 hasConceptScore W3048295601C41008148 @default.
- W3048295601 hasFunder F4320321001 @default.
- W3048295601 hasFunder F4320321885 @default.
- W3048295601 hasIssue "2" @default.
- W3048295601 hasLocation W30482956011 @default.
- W3048295601 hasLocation W30482956012 @default.
- W3048295601 hasOpenAccess W3048295601 @default.
- W3048295601 hasPrimaryLocation W30482956011 @default.
- W3048295601 hasRelatedWork W2563347706 @default.
- W3048295601 hasRelatedWork W2748952813 @default.
- W3048295601 hasRelatedWork W2899084033 @default.
- W3048295601 hasRelatedWork W2921179853 @default.
- W3048295601 hasRelatedWork W2943929564 @default.
- W3048295601 hasRelatedWork W2951885176 @default.
- W3048295601 hasRelatedWork W3015853966 @default.
- W3048295601 hasRelatedWork W3141632679 @default.
- W3048295601 hasRelatedWork W3200098344 @default.
- W3048295601 hasRelatedWork W3212211558 @default.
- W3048295601 hasVolume "8" @default.