Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048297667> ?p ?o ?g. }
- W3048297667 endingPage "106616" @default.
- W3048297667 startingPage "106616" @default.
- W3048297667 abstract "Gesture recognition is a key aspect of myoelectric control of upper-limb prostheses and is rather complex to achieve for transhumeral amputees. The prosthesis control of upper arm movements must rely only on the arm muscles, which were not involved in these gestures before the amputation. For decades, machine learning has been used in research for upper-limb gesture recognition. However, reported classification accuracies for transhumeral amputees have not improved significantly since the 1990s. Latest developments in deep learning suggest it can outperform classical machine learning both in accuracy and processing time. This study aims to determine if a deep learning approach, specifically a Recurrent Neural Network (RNN), could better recognize the movement intents in transhumeral amputees. To do so, the classification accuracy and the processing time of the RNN were measured and compared to two state-of-the-art approaches that use a linear discriminant analysis (LDA) and a multilayer perceptron (MLP) respectively. All three approaches were used to classify the signals of five transhumeral amputees between 6 upper-limb gestures. For subjects 1, 3 and 5, the classification accuracy was significantly higher (p = 0.0002) for the RNN (79.7%) compared to the LDA (67,1%) and the MLP (74,1%). Additionally, the RNN had a much smaller processing time, under 7 ms, compared to 385 ms and 377 ms for the LDA and the MLP respectively. Consequently, the RNN is better suited for a real-time prosthesis control that occurs between 100–250 ms. Results suggest deep learning as a viable solution for gesture recognition in transhumeral amputees." @default.
- W3048297667 created "2020-08-13" @default.
- W3048297667 creator A5030155623 @default.
- W3048297667 creator A5056836681 @default.
- W3048297667 creator A5075451585 @default.
- W3048297667 creator A5091119519 @default.
- W3048297667 date "2020-11-01" @default.
- W3048297667 modified "2023-10-17" @default.
- W3048297667 title "Recurrent Neural Network for electromyographic gesture recognition in transhumeral amputees" @default.
- W3048297667 cites W1187446851 @default.
- W3048297667 cites W1985032510 @default.
- W3048297667 cites W1988918035 @default.
- W3048297667 cites W1994569454 @default.
- W3048297667 cites W1995562189 @default.
- W3048297667 cites W1999841745 @default.
- W3048297667 cites W2021320602 @default.
- W3048297667 cites W2044628302 @default.
- W3048297667 cites W2051230789 @default.
- W3048297667 cites W2060626938 @default.
- W3048297667 cites W2064675550 @default.
- W3048297667 cites W2089836885 @default.
- W3048297667 cites W2106526692 @default.
- W3048297667 cites W2119008936 @default.
- W3048297667 cites W2123167643 @default.
- W3048297667 cites W2125585124 @default.
- W3048297667 cites W2129316790 @default.
- W3048297667 cites W2148268262 @default.
- W3048297667 cites W2156654664 @default.
- W3048297667 cites W2171188488 @default.
- W3048297667 cites W2345653654 @default.
- W3048297667 cites W2410599412 @default.
- W3048297667 cites W2518582440 @default.
- W3048297667 cites W2519323706 @default.
- W3048297667 cites W2618530766 @default.
- W3048297667 cites W2769907008 @default.
- W3048297667 cites W2887224044 @default.
- W3048297667 cites W2891669080 @default.
- W3048297667 cites W2894027118 @default.
- W3048297667 cites W2896028127 @default.
- W3048297667 cites W2899377266 @default.
- W3048297667 cites W2922311477 @default.
- W3048297667 cites W2962879438 @default.
- W3048297667 cites W3013382035 @default.
- W3048297667 doi "https://doi.org/10.1016/j.asoc.2020.106616" @default.
- W3048297667 hasPublicationYear "2020" @default.
- W3048297667 type Work @default.
- W3048297667 sameAs 3048297667 @default.
- W3048297667 citedByCount "16" @default.
- W3048297667 countsByYear W30482976672021 @default.
- W3048297667 countsByYear W30482976672022 @default.
- W3048297667 countsByYear W30482976672023 @default.
- W3048297667 crossrefType "journal-article" @default.
- W3048297667 hasAuthorship W3048297667A5030155623 @default.
- W3048297667 hasAuthorship W3048297667A5056836681 @default.
- W3048297667 hasAuthorship W3048297667A5075451585 @default.
- W3048297667 hasAuthorship W3048297667A5091119519 @default.
- W3048297667 hasConcept C147168706 @default.
- W3048297667 hasConcept C153180895 @default.
- W3048297667 hasConcept C154945302 @default.
- W3048297667 hasConcept C179717631 @default.
- W3048297667 hasConcept C207347870 @default.
- W3048297667 hasConcept C2776660947 @default.
- W3048297667 hasConcept C2778715743 @default.
- W3048297667 hasConcept C28490314 @default.
- W3048297667 hasConcept C41008148 @default.
- W3048297667 hasConcept C50644808 @default.
- W3048297667 hasConcept C69738355 @default.
- W3048297667 hasConcept C71924100 @default.
- W3048297667 hasConcept C99508421 @default.
- W3048297667 hasConceptScore W3048297667C147168706 @default.
- W3048297667 hasConceptScore W3048297667C153180895 @default.
- W3048297667 hasConceptScore W3048297667C154945302 @default.
- W3048297667 hasConceptScore W3048297667C179717631 @default.
- W3048297667 hasConceptScore W3048297667C207347870 @default.
- W3048297667 hasConceptScore W3048297667C2776660947 @default.
- W3048297667 hasConceptScore W3048297667C2778715743 @default.
- W3048297667 hasConceptScore W3048297667C28490314 @default.
- W3048297667 hasConceptScore W3048297667C41008148 @default.
- W3048297667 hasConceptScore W3048297667C50644808 @default.
- W3048297667 hasConceptScore W3048297667C69738355 @default.
- W3048297667 hasConceptScore W3048297667C71924100 @default.
- W3048297667 hasConceptScore W3048297667C99508421 @default.
- W3048297667 hasFunder F4320334841 @default.
- W3048297667 hasLocation W30482976671 @default.
- W3048297667 hasOpenAccess W3048297667 @default.
- W3048297667 hasPrimaryLocation W30482976671 @default.
- W3048297667 hasRelatedWork W1537282076 @default.
- W3048297667 hasRelatedWork W1560999061 @default.
- W3048297667 hasRelatedWork W1968332688 @default.
- W3048297667 hasRelatedWork W2146076056 @default.
- W3048297667 hasRelatedWork W2339674921 @default.
- W3048297667 hasRelatedWork W2350891938 @default.
- W3048297667 hasRelatedWork W2353567328 @default.
- W3048297667 hasRelatedWork W2380927352 @default.
- W3048297667 hasRelatedWork W2891847116 @default.
- W3048297667 hasRelatedWork W40124310 @default.
- W3048297667 hasVolume "96" @default.
- W3048297667 isParatext "false" @default.