Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048299477> ?p ?o ?g. }
- W3048299477 abstract "There is significant interest in improving the performance of batteries to increase electrification of transportation and aviation. Recently, performance improvements have been in large part due to changes in the composition of the cathode material family, LiNixMnyCo(1-x-y)O2 (e.g., 111-622-811). Despite the importance of these materials and tremendous progress with density functional theory (DFT) calculations in understanding basic design principles, it is computationally prohibitively expensive to make this problem tractable. Specifically, predicting the open circuit voltage for any cathode material in this family requires evaluation of stability in a quaternary phase space. In this work, we develop machine-learning potentials using fingerprinting based on atom-centered symmetry functions, used with a neural network model, trained on DFT calculations with a prediction accuracy of 3.7 meV/atom and 0.13 eV/Å for energy and force, respectively. We perform hyperparameter optimization of the fingerprinting parameters using Bayesian optimization through the Dragonfly package. Using this ML calculator, we first test its performance in predicting thermodynamic properties within the Debye-Grüneisen model and find good agreement for most thermodynamic properties, including the Gibbs free energy and entropy. Then, we use this to calculate the Li-vacancy ordering as a function of Li composition to simulate the process of discharging/charging of the cathode using grand canonical Monte Carlo simulations. The predicted voltage profiles are in good agreement with the experimental ones and provide an approach to rapidly perform design optimization in this phase space. This study serves as a proof-point of machine-learned DFT surrogates to enable battery materials optimization." @default.
- W3048299477 created "2020-08-13" @default.
- W3048299477 creator A5077517714 @default.
- W3048299477 creator A5081036535 @default.
- W3048299477 date "2020-08-07" @default.
- W3048299477 modified "2023-10-17" @default.
- W3048299477 title "An accurate machine-learning calculator for optimization of Li-ion battery cathodes" @default.
- W3048299477 cites W1510052597 @default.
- W3048299477 cites W1967853451 @default.
- W3048299477 cites W1975997599 @default.
- W3048299477 cites W1987207774 @default.
- W3048299477 cites W1992654675 @default.
- W3048299477 cites W1992739805 @default.
- W3048299477 cites W2009917643 @default.
- W3048299477 cites W2012832535 @default.
- W3048299477 cites W2025444507 @default.
- W3048299477 cites W2030841140 @default.
- W3048299477 cites W2038026789 @default.
- W3048299477 cites W2038972038 @default.
- W3048299477 cites W2049201067 @default.
- W3048299477 cites W2061294357 @default.
- W3048299477 cites W2068084425 @default.
- W3048299477 cites W2088905711 @default.
- W3048299477 cites W2127168465 @default.
- W3048299477 cites W2169199846 @default.
- W3048299477 cites W2297759050 @default.
- W3048299477 cites W2298952507 @default.
- W3048299477 cites W2328928309 @default.
- W3048299477 cites W2410722695 @default.
- W3048299477 cites W2547447472 @default.
- W3048299477 cites W2559148811 @default.
- W3048299477 cites W2560394740 @default.
- W3048299477 cites W2591780975 @default.
- W3048299477 cites W2650911154 @default.
- W3048299477 cites W2727713222 @default.
- W3048299477 cites W2761046937 @default.
- W3048299477 cites W2892293367 @default.
- W3048299477 cites W2898846720 @default.
- W3048299477 cites W2924564326 @default.
- W3048299477 cites W2952849935 @default.
- W3048299477 cites W2998540884 @default.
- W3048299477 cites W3000291311 @default.
- W3048299477 cites W3005106699 @default.
- W3048299477 cites W3100571530 @default.
- W3048299477 cites W3104339386 @default.
- W3048299477 cites W3106153623 @default.
- W3048299477 cites W4234228486 @default.
- W3048299477 doi "https://doi.org/10.1063/5.0015872" @default.
- W3048299477 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32770891" @default.
- W3048299477 hasPublicationYear "2020" @default.
- W3048299477 type Work @default.
- W3048299477 sameAs 3048299477 @default.
- W3048299477 citedByCount "39" @default.
- W3048299477 countsByYear W30482994772020 @default.
- W3048299477 countsByYear W30482994772021 @default.
- W3048299477 countsByYear W30482994772022 @default.
- W3048299477 countsByYear W30482994772023 @default.
- W3048299477 crossrefType "journal-article" @default.
- W3048299477 hasAuthorship W3048299477A5077517714 @default.
- W3048299477 hasAuthorship W3048299477A5081036535 @default.
- W3048299477 hasBestOaLocation W30482994771 @default.
- W3048299477 hasConcept C105795698 @default.
- W3048299477 hasConcept C11413529 @default.
- W3048299477 hasConcept C119857082 @default.
- W3048299477 hasConcept C121332964 @default.
- W3048299477 hasConcept C121864883 @default.
- W3048299477 hasConcept C147597530 @default.
- W3048299477 hasConcept C152365726 @default.
- W3048299477 hasConcept C185592680 @default.
- W3048299477 hasConcept C19499675 @default.
- W3048299477 hasConcept C2778049539 @default.
- W3048299477 hasConcept C33923547 @default.
- W3048299477 hasConcept C41008148 @default.
- W3048299477 hasConceptScore W3048299477C105795698 @default.
- W3048299477 hasConceptScore W3048299477C11413529 @default.
- W3048299477 hasConceptScore W3048299477C119857082 @default.
- W3048299477 hasConceptScore W3048299477C121332964 @default.
- W3048299477 hasConceptScore W3048299477C121864883 @default.
- W3048299477 hasConceptScore W3048299477C147597530 @default.
- W3048299477 hasConceptScore W3048299477C152365726 @default.
- W3048299477 hasConceptScore W3048299477C185592680 @default.
- W3048299477 hasConceptScore W3048299477C19499675 @default.
- W3048299477 hasConceptScore W3048299477C2778049539 @default.
- W3048299477 hasConceptScore W3048299477C33923547 @default.
- W3048299477 hasConceptScore W3048299477C41008148 @default.
- W3048299477 hasFunder F4320306076 @default.
- W3048299477 hasIssue "5" @default.
- W3048299477 hasLocation W30482994771 @default.
- W3048299477 hasLocation W30482994772 @default.
- W3048299477 hasOpenAccess W3048299477 @default.
- W3048299477 hasPrimaryLocation W30482994771 @default.
- W3048299477 hasRelatedWork W2005266888 @default.
- W3048299477 hasRelatedWork W3106461837 @default.
- W3048299477 hasRelatedWork W3168182983 @default.
- W3048299477 hasRelatedWork W3199608561 @default.
- W3048299477 hasRelatedWork W4283700523 @default.
- W3048299477 hasRelatedWork W4321472004 @default.
- W3048299477 hasRelatedWork W4364381099 @default.
- W3048299477 hasRelatedWork W4382049207 @default.
- W3048299477 hasRelatedWork W4385731244 @default.