Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048301386> ?p ?o ?g. }
- W3048301386 endingPage "78" @default.
- W3048301386 startingPage "66" @default.
- W3048301386 abstract "To mitigate the greenhouse gas effect, accurate and precise landfill gas prediction models are required for more precise prediction of the amount and recovery time of methane gas from landfills. When the study associates to greenhouse gas emissions problems, time series prediction models are of considerable interests, in which significant past records of gas data are required. This study is the first to specially impute the missing methane (CH4) data for applying in time series artificial neural network (ANN) model in an attempt to predict daily CH4 generation rate from a landfill in Regina, SK, Canada. Pre-processing was conducted on data to evaluate independent and significant meteorological input variables and provide suitable dataset for developing CH4 generation models. A two-stage time series model proposed in this study was performed by missing data imputation at the first stage, followed by a neural network auto-regressive model with exogenous inputs (NARX) at the second stage. The model with 3 layers, 5 climatic variables and 9 neurons in the hidden layer was the optimal structure. This model shows the high performance in CH4 prediction with the average index of agreement of 0.92 and the average mean absolute percentage error (MAPE) of 3.03% during the testing stage. Missing data imputation coupled with NARX method decreased the mean squared error (MSE) of the model by 84% (compared to Multilayer Perceptrons neural network model) in the testing period representing the effectiveness of missing data estimation coupling with time series ANN models in daily CH4 generation prediction." @default.
- W3048301386 created "2020-08-13" @default.
- W3048301386 creator A5040481376 @default.
- W3048301386 creator A5048956311 @default.
- W3048301386 creator A5061601746 @default.
- W3048301386 creator A5066638179 @default.
- W3048301386 date "2020-10-01" @default.
- W3048301386 modified "2023-10-03" @default.
- W3048301386 title "Application of a multi-stage neural network approach for time-series landfill gas modeling with missing data imputation" @default.
- W3048301386 cites W1616007686 @default.
- W3048301386 cites W1964065566 @default.
- W3048301386 cites W1964176024 @default.
- W3048301386 cites W1965982810 @default.
- W3048301386 cites W1968840994 @default.
- W3048301386 cites W1969389343 @default.
- W3048301386 cites W1971625174 @default.
- W3048301386 cites W1977177161 @default.
- W3048301386 cites W1985475871 @default.
- W3048301386 cites W1987557628 @default.
- W3048301386 cites W1987739446 @default.
- W3048301386 cites W1990058661 @default.
- W3048301386 cites W1993220086 @default.
- W3048301386 cites W2002467882 @default.
- W3048301386 cites W2011539068 @default.
- W3048301386 cites W2017587036 @default.
- W3048301386 cites W2020383304 @default.
- W3048301386 cites W2024101422 @default.
- W3048301386 cites W2026065039 @default.
- W3048301386 cites W2038829747 @default.
- W3048301386 cites W2042535339 @default.
- W3048301386 cites W2047627251 @default.
- W3048301386 cites W2057850952 @default.
- W3048301386 cites W2062579242 @default.
- W3048301386 cites W2064921273 @default.
- W3048301386 cites W2066003898 @default.
- W3048301386 cites W2066966832 @default.
- W3048301386 cites W2074520246 @default.
- W3048301386 cites W2077865456 @default.
- W3048301386 cites W2079794514 @default.
- W3048301386 cites W2080352926 @default.
- W3048301386 cites W2087632795 @default.
- W3048301386 cites W2088217228 @default.
- W3048301386 cites W2089424411 @default.
- W3048301386 cites W2100358124 @default.
- W3048301386 cites W2104817364 @default.
- W3048301386 cites W2105796585 @default.
- W3048301386 cites W2110309989 @default.
- W3048301386 cites W2115445719 @default.
- W3048301386 cites W2130231837 @default.
- W3048301386 cites W2149233462 @default.
- W3048301386 cites W2158146824 @default.
- W3048301386 cites W2163479040 @default.
- W3048301386 cites W2174160981 @default.
- W3048301386 cites W2182833538 @default.
- W3048301386 cites W2404304670 @default.
- W3048301386 cites W2412393926 @default.
- W3048301386 cites W2464574198 @default.
- W3048301386 cites W2513209672 @default.
- W3048301386 cites W2583599952 @default.
- W3048301386 cites W2587345921 @default.
- W3048301386 cites W2762345799 @default.
- W3048301386 cites W2774603473 @default.
- W3048301386 cites W2792315929 @default.
- W3048301386 cites W2800539104 @default.
- W3048301386 cites W2882992126 @default.
- W3048301386 cites W2900122737 @default.
- W3048301386 cites W2902057020 @default.
- W3048301386 cites W2904349063 @default.
- W3048301386 cites W2951347416 @default.
- W3048301386 cites W2954137991 @default.
- W3048301386 cites W4252159371 @default.
- W3048301386 doi "https://doi.org/10.1016/j.wasman.2020.07.034" @default.
- W3048301386 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32784123" @default.
- W3048301386 hasPublicationYear "2020" @default.
- W3048301386 type Work @default.
- W3048301386 sameAs 3048301386 @default.
- W3048301386 citedByCount "28" @default.
- W3048301386 countsByYear W30483013862020 @default.
- W3048301386 countsByYear W30483013862021 @default.
- W3048301386 countsByYear W30483013862022 @default.
- W3048301386 countsByYear W30483013862023 @default.
- W3048301386 crossrefType "journal-article" @default.
- W3048301386 hasAuthorship W3048301386A5040481376 @default.
- W3048301386 hasAuthorship W3048301386A5048956311 @default.
- W3048301386 hasAuthorship W3048301386A5061601746 @default.
- W3048301386 hasAuthorship W3048301386A5066638179 @default.
- W3048301386 hasConcept C105795698 @default.
- W3048301386 hasConcept C119857082 @default.
- W3048301386 hasConcept C124101348 @default.
- W3048301386 hasConcept C139945424 @default.
- W3048301386 hasConcept C150217764 @default.
- W3048301386 hasConcept C151406439 @default.
- W3048301386 hasConcept C159877910 @default.
- W3048301386 hasConcept C179717631 @default.
- W3048301386 hasConcept C33923547 @default.
- W3048301386 hasConcept C41008148 @default.
- W3048301386 hasConcept C42536954 @default.
- W3048301386 hasConcept C50644808 @default.