Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048309866> ?p ?o ?g. }
- W3048309866 abstract "Next-generation sequencing (NGS) has instigated the research on the role of the microbiome in health and disease. The compositional nature of such microbiome datasets makes it however challenging to identify those microbial taxa that are truly associated with an intervention or health outcome. Quantitative microbiome profiling overcomes the compositional structure of microbiome sequencing data by integrating absolute quantification of microbial abundances into the NGS data. Both cell-based methods (e.g. flow cytometry) and molecular methods (qPCR) have been used to determine the absolute microbial abundances, but to what extend different quantification methods generate similar quantitative microbiome profiles has so far not been explored. Here we compared relative microbiome profiling (without incorporation of microbial quantification) to three variations of quantitative microbiome profiling: 1) microbial cell counting using flow cytometry (QMP); 2) counting of microbial cells using flow cytometry combined with Propidium Monoazide pre-treatment of fecal samples before metagenomics DNA isolation in order to only profile the microbial composition of intact cells (QMP-PMA), and; 3) molecular based quantification of the microbial load using qPCR targeting the 16S rRNA gene. Although qPCR and flow cytometry both resulted in accurate and strongly correlated results when quantifying the bacterial abundance of a mock community of bacterial cells, the two methods resulted in highly divergent quantitative microbial profiles when analyzing the microbial composition of fecal samples from 16 healthy volunteers. These differences could not be attributed to the presence of free extracellular prokaryotic DNA in the fecal samples as sample pre-treatment with Propidium Monoazide did not improve the concordance between qPCR-based and flow cytometry-based QMP. Also lack of precision of qPCR was ruled out as a major cause of the disconcordant findings, since quantification of the fecal microbial load by the highly sensitive digital droplet PCR correlated strongly with qPCR. In conclusion, quantitative microbiome profiling is an elegant approach to bypass the compositional nature of microbiome NGS data, however it is important to realize that technical sources of variability may introduce substantial additional bias depending on the quantification method being used." @default.
- W3048309866 created "2020-08-13" @default.
- W3048309866 creator A5017463047 @default.
- W3048309866 creator A5036467945 @default.
- W3048309866 creator A5037672153 @default.
- W3048309866 creator A5049273936 @default.
- W3048309866 creator A5051439959 @default.
- W3048309866 creator A5053666567 @default.
- W3048309866 creator A5056341837 @default.
- W3048309866 creator A5057731621 @default.
- W3048309866 creator A5064685122 @default.
- W3048309866 creator A5065028617 @default.
- W3048309866 creator A5075780634 @default.
- W3048309866 creator A5076264664 @default.
- W3048309866 creator A5087773614 @default.
- W3048309866 creator A5088106959 @default.
- W3048309866 creator A5089849307 @default.
- W3048309866 date "2020-08-07" @default.
- W3048309866 modified "2023-10-15" @default.
- W3048309866 title "How to Count Our Microbes? The Effect of Different Quantitative Microbiome Profiling Approaches" @default.
- W3048309866 cites W1764149807 @default.
- W3048309866 cites W1847859849 @default.
- W3048309866 cites W2042194227 @default.
- W3048309866 cites W2053801811 @default.
- W3048309866 cites W2092855227 @default.
- W3048309866 cites W2098985451 @default.
- W3048309866 cites W2110065044 @default.
- W3048309866 cites W2116846792 @default.
- W3048309866 cites W2136879569 @default.
- W3048309866 cites W2152885278 @default.
- W3048309866 cites W2157107905 @default.
- W3048309866 cites W2163074358 @default.
- W3048309866 cites W2166171121 @default.
- W3048309866 cites W2178459747 @default.
- W3048309866 cites W2547478887 @default.
- W3048309866 cites W2763540102 @default.
- W3048309866 cites W2770269406 @default.
- W3048309866 cites W2775152143 @default.
- W3048309866 cites W2790737890 @default.
- W3048309866 cites W2803457956 @default.
- W3048309866 cites W2809048372 @default.
- W3048309866 cites W2898575052 @default.
- W3048309866 cites W2951061751 @default.
- W3048309866 cites W2962091781 @default.
- W3048309866 cites W2978693097 @default.
- W3048309866 cites W3000731297 @default.
- W3048309866 cites W3104762538 @default.
- W3048309866 doi "https://doi.org/10.3389/fcimb.2020.00403" @default.
- W3048309866 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7426659" @default.
- W3048309866 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32850498" @default.
- W3048309866 hasPublicationYear "2020" @default.
- W3048309866 type Work @default.
- W3048309866 sameAs 3048309866 @default.
- W3048309866 citedByCount "49" @default.
- W3048309866 countsByYear W30483098662020 @default.
- W3048309866 countsByYear W30483098662021 @default.
- W3048309866 countsByYear W30483098662022 @default.
- W3048309866 countsByYear W30483098662023 @default.
- W3048309866 crossrefType "journal-article" @default.
- W3048309866 hasAuthorship W3048309866A5017463047 @default.
- W3048309866 hasAuthorship W3048309866A5036467945 @default.
- W3048309866 hasAuthorship W3048309866A5037672153 @default.
- W3048309866 hasAuthorship W3048309866A5049273936 @default.
- W3048309866 hasAuthorship W3048309866A5051439959 @default.
- W3048309866 hasAuthorship W3048309866A5053666567 @default.
- W3048309866 hasAuthorship W3048309866A5056341837 @default.
- W3048309866 hasAuthorship W3048309866A5057731621 @default.
- W3048309866 hasAuthorship W3048309866A5064685122 @default.
- W3048309866 hasAuthorship W3048309866A5065028617 @default.
- W3048309866 hasAuthorship W3048309866A5075780634 @default.
- W3048309866 hasAuthorship W3048309866A5076264664 @default.
- W3048309866 hasAuthorship W3048309866A5087773614 @default.
- W3048309866 hasAuthorship W3048309866A5088106959 @default.
- W3048309866 hasAuthorship W3048309866A5089849307 @default.
- W3048309866 hasBestOaLocation W30483098661 @default.
- W3048309866 hasConcept C104317684 @default.
- W3048309866 hasConcept C143121216 @default.
- W3048309866 hasConcept C15151743 @default.
- W3048309866 hasConcept C153911025 @default.
- W3048309866 hasConcept C2776958425 @default.
- W3048309866 hasConcept C48023723 @default.
- W3048309866 hasConcept C523546767 @default.
- W3048309866 hasConcept C54355233 @default.
- W3048309866 hasConcept C553184892 @default.
- W3048309866 hasConcept C60644358 @default.
- W3048309866 hasConcept C69562835 @default.
- W3048309866 hasConcept C70721500 @default.
- W3048309866 hasConcept C86803240 @default.
- W3048309866 hasConcept C89423630 @default.
- W3048309866 hasConceptScore W3048309866C104317684 @default.
- W3048309866 hasConceptScore W3048309866C143121216 @default.
- W3048309866 hasConceptScore W3048309866C15151743 @default.
- W3048309866 hasConceptScore W3048309866C153911025 @default.
- W3048309866 hasConceptScore W3048309866C2776958425 @default.
- W3048309866 hasConceptScore W3048309866C48023723 @default.
- W3048309866 hasConceptScore W3048309866C523546767 @default.
- W3048309866 hasConceptScore W3048309866C54355233 @default.
- W3048309866 hasConceptScore W3048309866C553184892 @default.
- W3048309866 hasConceptScore W3048309866C60644358 @default.
- W3048309866 hasConceptScore W3048309866C69562835 @default.