Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048315053> ?p ?o ?g. }
- W3048315053 abstract "Abstract Background Three-dimensional printing (3DP) offers a unique opportunity to build flexible vascular patient-specific coronary models for device testing, treatment planning, and physiological simulations. By optimizing the 3DP design to replicate the geometrical and mechanical properties of healthy and diseased arteries, we may improve the relevance of using such models to simulate the hemodynamics of coronary disease. We developed a method to build 3DP patient specific coronary phantoms, which maintain a significant part of the coronary tree, while preserving geometrical accuracy of the atherosclerotic plaques and allows for an adjustable hydraulic resistance. Methods Coronary computed tomography angiography (CCTA) data was used within Vitrea (Vital Images, Minnetonka, MN) cardiac analysis application for automatic segmentation of the aortic root, Left Anterior Descending (LAD), Left Circumflex (LCX), Right Coronary Artery (RCA), and calcifications. Stereolithographic (STL) files of the vasculature and calcium were imported into Autodesk Meshmixer for 3D model optimization. A base with three chambers was built and interfaced with the phantom to allow fluid collection and independent distal resistance adjustment of the RCA, LAD and LCX and branching arteries. For the 3DP we used Agilus for the arterial wall, VeroClear for the base and a Vero blend for the calcifications, respectively. Each chamber outlet allowed interface with catheters of varying lengths and diameters for simulation of hydraulic resistance of both normal and hyperemic coronary flow conditions. To demonstrate the manufacturing approach appropriateness, models were tested in flow experiments. Results Models were used successfully in flow experiments to simulate normal and hyperemic flow conditions. The inherent mean resistance of the chamber for the LAD, LCX, and RCA, were 1671, 1820, and 591 (dynes ∙ sec/ cm 5 ), respectively. This was negligible when compared with estimates in humans, with the chamber resistance equating to 0.65–5.86%, 1.23–6.86%, and 0.05–1.67% of the coronary resistance for the LAD, LCX, and RCA, respectively at varying flow rates and activity states. Therefore, the chamber served as a means to simulate the compliance of the distal coronary trees and to allow facile coupling with a set of known resistance catheters to simulate various physical activity levels. Conclusions We have developed a method to create complex 3D printed patient specific coronary models derived from CCTA, which allow adjustable distal capillary bed resistances. This manufacturing approach permits comprehensive coronary model development which may be used for physiologically relevant flow simulations." @default.
- W3048315053 created "2020-08-13" @default.
- W3048315053 creator A5030490877 @default.
- W3048315053 creator A5041170811 @default.
- W3048315053 creator A5050035310 @default.
- W3048315053 creator A5068520385 @default.
- W3048315053 creator A5088541982 @default.
- W3048315053 date "2020-08-06" @default.
- W3048315053 modified "2023-10-07" @default.
- W3048315053 title "Method to simulate distal flow resistance in coronary arteries in 3D printed patient specific coronary models" @default.
- W3048315053 cites W1811184201 @default.
- W3048315053 cites W1848281328 @default.
- W3048315053 cites W1850172948 @default.
- W3048315053 cites W1978755748 @default.
- W3048315053 cites W1992962478 @default.
- W3048315053 cites W2006638983 @default.
- W3048315053 cites W2014926008 @default.
- W3048315053 cites W2026697171 @default.
- W3048315053 cites W2048872136 @default.
- W3048315053 cites W2052891452 @default.
- W3048315053 cites W2067824277 @default.
- W3048315053 cites W2070231051 @default.
- W3048315053 cites W2072238296 @default.
- W3048315053 cites W2086034790 @default.
- W3048315053 cites W2086286341 @default.
- W3048315053 cites W2102946134 @default.
- W3048315053 cites W2114369401 @default.
- W3048315053 cites W2120533726 @default.
- W3048315053 cites W2216169356 @default.
- W3048315053 cites W2314326215 @default.
- W3048315053 cites W2464319088 @default.
- W3048315053 cites W2539293568 @default.
- W3048315053 cites W2595182092 @default.
- W3048315053 cites W2595541563 @default.
- W3048315053 cites W2595992935 @default.
- W3048315053 cites W2791828629 @default.
- W3048315053 cites W2902967452 @default.
- W3048315053 cites W2929768480 @default.
- W3048315053 cites W3021558556 @default.
- W3048315053 doi "https://doi.org/10.1186/s41205-020-00072-7" @default.
- W3048315053 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7410153" @default.
- W3048315053 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32761497" @default.
- W3048315053 hasPublicationYear "2020" @default.
- W3048315053 type Work @default.
- W3048315053 sameAs 3048315053 @default.
- W3048315053 citedByCount "11" @default.
- W3048315053 countsByYear W30483150532020 @default.
- W3048315053 countsByYear W30483150532021 @default.
- W3048315053 countsByYear W30483150532022 @default.
- W3048315053 countsByYear W30483150532023 @default.
- W3048315053 crossrefType "journal-article" @default.
- W3048315053 hasAuthorship W3048315053A5030490877 @default.
- W3048315053 hasAuthorship W3048315053A5041170811 @default.
- W3048315053 hasAuthorship W3048315053A5050035310 @default.
- W3048315053 hasAuthorship W3048315053A5068520385 @default.
- W3048315053 hasAuthorship W3048315053A5088541982 @default.
- W3048315053 hasBestOaLocation W30483150531 @default.
- W3048315053 hasConcept C104293457 @default.
- W3048315053 hasConcept C126322002 @default.
- W3048315053 hasConcept C126838900 @default.
- W3048315053 hasConcept C136229726 @default.
- W3048315053 hasConcept C158846371 @default.
- W3048315053 hasConcept C159985019 @default.
- W3048315053 hasConcept C164705383 @default.
- W3048315053 hasConcept C192562407 @default.
- W3048315053 hasConcept C197321550 @default.
- W3048315053 hasConcept C2776157398 @default.
- W3048315053 hasConcept C2776820930 @default.
- W3048315053 hasConcept C2777987666 @default.
- W3048315053 hasConcept C2778213512 @default.
- W3048315053 hasConcept C2778742706 @default.
- W3048315053 hasConcept C2779980429 @default.
- W3048315053 hasConcept C2983112114 @default.
- W3048315053 hasConcept C2993369777 @default.
- W3048315053 hasConcept C3019004856 @default.
- W3048315053 hasConcept C3019308078 @default.
- W3048315053 hasConcept C500558357 @default.
- W3048315053 hasConcept C524769229 @default.
- W3048315053 hasConcept C71924100 @default.
- W3048315053 hasConceptScore W3048315053C104293457 @default.
- W3048315053 hasConceptScore W3048315053C126322002 @default.
- W3048315053 hasConceptScore W3048315053C126838900 @default.
- W3048315053 hasConceptScore W3048315053C136229726 @default.
- W3048315053 hasConceptScore W3048315053C158846371 @default.
- W3048315053 hasConceptScore W3048315053C159985019 @default.
- W3048315053 hasConceptScore W3048315053C164705383 @default.
- W3048315053 hasConceptScore W3048315053C192562407 @default.
- W3048315053 hasConceptScore W3048315053C197321550 @default.
- W3048315053 hasConceptScore W3048315053C2776157398 @default.
- W3048315053 hasConceptScore W3048315053C2776820930 @default.
- W3048315053 hasConceptScore W3048315053C2777987666 @default.
- W3048315053 hasConceptScore W3048315053C2778213512 @default.
- W3048315053 hasConceptScore W3048315053C2778742706 @default.
- W3048315053 hasConceptScore W3048315053C2779980429 @default.
- W3048315053 hasConceptScore W3048315053C2983112114 @default.
- W3048315053 hasConceptScore W3048315053C2993369777 @default.
- W3048315053 hasConceptScore W3048315053C3019004856 @default.
- W3048315053 hasConceptScore W3048315053C3019308078 @default.
- W3048315053 hasConceptScore W3048315053C500558357 @default.
- W3048315053 hasConceptScore W3048315053C524769229 @default.