Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048319442> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W3048319442 endingPage "106732" @default.
- W3048319442 startingPage "106732" @default.
- W3048319442 abstract "The integration of distributed energy resources (DER) increase the uncertainty of the load. Probabilistic load forecasting (PLF) is able to model these uncertainties in the form of quantile, interval, or density. However, the uncertainties are usually given individually for every single period which fails to capture the temporal variations across periods. Therefore, this paper proposes a generative adversarial network (GAN)-based scenario generation approach to model both the uncertainties and the variations of the load. Specifically, point forecasting is first conducted and the corresponding residuals are calculated. On this basis, a conditional GAN model is designed and trained. Then, the well-trained GAN model generates residual scenarios that are conditional on the day type, temperatures, and historical loads. Finally, the effectiveness of the uncertainty modeling by the generated scenarios is evaluated from different perspectives. Case studies on open datasets verify the effectiveness and superiority of the proposed method." @default.
- W3048319442 created "2020-08-13" @default.
- W3048319442 creator A5022565553 @default.
- W3048319442 creator A5029570783 @default.
- W3048319442 creator A5076632969 @default.
- W3048319442 creator A5080942074 @default.
- W3048319442 date "2020-12-01" @default.
- W3048319442 modified "2023-10-03" @default.
- W3048319442 title "Modeling load forecast uncertainty using generative adversarial networks" @default.
- W3048319442 cites W2091192436 @default.
- W3048319442 cites W2147755528 @default.
- W3048319442 cites W2275088575 @default.
- W3048319442 cites W2281236923 @default.
- W3048319442 cites W2286988827 @default.
- W3048319442 cites W2527129049 @default.
- W3048319442 cites W2612872900 @default.
- W3048319442 cites W2739824434 @default.
- W3048319442 cites W2764018574 @default.
- W3048319442 cites W2805797750 @default.
- W3048319442 cites W2884414452 @default.
- W3048319442 cites W2888917438 @default.
- W3048319442 cites W2896194880 @default.
- W3048319442 cites W2963188571 @default.
- W3048319442 doi "https://doi.org/10.1016/j.epsr.2020.106732" @default.
- W3048319442 hasPublicationYear "2020" @default.
- W3048319442 type Work @default.
- W3048319442 sameAs 3048319442 @default.
- W3048319442 citedByCount "30" @default.
- W3048319442 countsByYear W30483194422020 @default.
- W3048319442 countsByYear W30483194422021 @default.
- W3048319442 countsByYear W30483194422022 @default.
- W3048319442 countsByYear W30483194422023 @default.
- W3048319442 crossrefType "journal-article" @default.
- W3048319442 hasAuthorship W3048319442A5022565553 @default.
- W3048319442 hasAuthorship W3048319442A5029570783 @default.
- W3048319442 hasAuthorship W3048319442A5076632969 @default.
- W3048319442 hasAuthorship W3048319442A5080942074 @default.
- W3048319442 hasConcept C103402496 @default.
- W3048319442 hasConcept C11413529 @default.
- W3048319442 hasConcept C114289077 @default.
- W3048319442 hasConcept C114614502 @default.
- W3048319442 hasConcept C118671147 @default.
- W3048319442 hasConcept C119857082 @default.
- W3048319442 hasConcept C122282355 @default.
- W3048319442 hasConcept C124101348 @default.
- W3048319442 hasConcept C149782125 @default.
- W3048319442 hasConcept C154945302 @default.
- W3048319442 hasConcept C155512373 @default.
- W3048319442 hasConcept C2524010 @default.
- W3048319442 hasConcept C2778067643 @default.
- W3048319442 hasConcept C28719098 @default.
- W3048319442 hasConcept C33923547 @default.
- W3048319442 hasConcept C39890363 @default.
- W3048319442 hasConcept C41008148 @default.
- W3048319442 hasConcept C49937458 @default.
- W3048319442 hasConceptScore W3048319442C103402496 @default.
- W3048319442 hasConceptScore W3048319442C11413529 @default.
- W3048319442 hasConceptScore W3048319442C114289077 @default.
- W3048319442 hasConceptScore W3048319442C114614502 @default.
- W3048319442 hasConceptScore W3048319442C118671147 @default.
- W3048319442 hasConceptScore W3048319442C119857082 @default.
- W3048319442 hasConceptScore W3048319442C122282355 @default.
- W3048319442 hasConceptScore W3048319442C124101348 @default.
- W3048319442 hasConceptScore W3048319442C149782125 @default.
- W3048319442 hasConceptScore W3048319442C154945302 @default.
- W3048319442 hasConceptScore W3048319442C155512373 @default.
- W3048319442 hasConceptScore W3048319442C2524010 @default.
- W3048319442 hasConceptScore W3048319442C2778067643 @default.
- W3048319442 hasConceptScore W3048319442C28719098 @default.
- W3048319442 hasConceptScore W3048319442C33923547 @default.
- W3048319442 hasConceptScore W3048319442C39890363 @default.
- W3048319442 hasConceptScore W3048319442C41008148 @default.
- W3048319442 hasConceptScore W3048319442C49937458 @default.
- W3048319442 hasLocation W30483194421 @default.
- W3048319442 hasOpenAccess W3048319442 @default.
- W3048319442 hasPrimaryLocation W30483194421 @default.
- W3048319442 hasRelatedWork W2050674206 @default.
- W3048319442 hasRelatedWork W2103532582 @default.
- W3048319442 hasRelatedWork W2124640139 @default.
- W3048319442 hasRelatedWork W2265504662 @default.
- W3048319442 hasRelatedWork W2593302577 @default.
- W3048319442 hasRelatedWork W2967276990 @default.
- W3048319442 hasRelatedWork W3089516618 @default.
- W3048319442 hasRelatedWork W4283586911 @default.
- W3048319442 hasRelatedWork W4312560394 @default.
- W3048319442 hasRelatedWork W4382020841 @default.
- W3048319442 hasVolume "189" @default.
- W3048319442 isParatext "false" @default.
- W3048319442 isRetracted "false" @default.
- W3048319442 magId "3048319442" @default.
- W3048319442 workType "article" @default.