Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048320094> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W3048320094 abstract "Washington River Protection Solutions (WRPS) is working to support early production of immobilized low-activity waste by feeding Hanford tank supernate from tank farms to the Hanford Waste Treatment and Immobilization Plant (WTP) Low-Activity Waste (LAW) facility. This goal incorporates the design of a Tank-Side Cesium Removal (TSCR) system, which in effect filters tank waste supernate and processes it through a cesium ion exchange medium to remove 137Cs. The 137Cs-depleted product is sent to the WTP for vitrification. Rovira et al. (2018) reported the successful Cs removal from Hanford tank 241-AP-107 waste (hereafter called AP-107) using crystalline silicotitanate (CST) ion exchange media manufactured by Honeywell UOP, LLC (product IONSIVTM R9140-B, Batch 2081000057) in a lead-lag column system. Since that testing, WRPS has changed the column design to a three-column system. WRPS requested a repeated study with AP-107 tank waste using a different batch of IONSIVTM R9140-B, Lot 2002009604, in a three-column format. A small-scale test platform was constructed to demonstrate solids filtration, Cs removal, and LAW vitrification and installed at Pacific Northwest National Laboratory. This report describes the small-scale ion exchange testing system component of the test platform and the processing of approximately 8.55 L of filtered AP-107 supernate using CST, Lot 8056262-999, that passed through a 25-mesh filter. This report also describes the Cs ion exchange batch contact testing to determine the Cs distribution coefficient and the maximum Cs loading capacity in the AP-107 tank waste matrix. Batch contact testing helps to evaluate CST performance on tank waste supernate and is often used prior to processing tank waste through ion exchange columns to assess some performance metrics (e.g., 50% Cs breakthrough). Batch contact tests were performed with the filtered AP-107 tank waste at four Cs concentrations at a phase ratio of 200 (liquid volume to exchanger mass). The distribution coefficient (Kd) at the equilibrium condition of 9.2 µg Cs/mL (AP-107 feed condition) was determined to be 806 mL AP 107/g CST. With a CST bed density of 1.01 g/mL (<25 mesh CST), this Kd corresponded to a predicted 50% Cs breakthrough of 814 bed volumes (BVs). The Cs load capacity at the equilibrium feed condition was determined to be 8.3 mg Cs/g dry CST. The three-column format testing was prototypic to the intended TSCR operations, albeit on a small scale with 10-mL CST beds. Flowrate was adjusted to match the CST contact time expected for the full-scale operation, i.e., matched bed volumes per hour (BV/h) flow rate. The feed was processed downflow through the lead column, then through the middle column, and then through the polish column. Loading continued at an average of 1.88 BV/h (1.83 to 2.04 BV/h range) until the entire available AP-107 feed was processed. The Cs-decontaminated product will be provided for vitrification testing. The lead column only reached 45% Cs breakthrough after processing 855 BVs of feed. The 50% Cs breakthrough was extrapolated to occur at ~900 BVs. This extrapolated 50% Cs breakthrough value differed from the batch contact estimate (814 BVs) by 13%. The waste acceptance criteria (WAC) or contract limit for the WTP LAW vitrification facility is 3.18E-5 Ci 137Cs per mole Na. For the AP-107 tank waste, only 0.127% of the influent 137Cs concentration may be delivered to the WTP; this required a Cs decontamination factor of 787. The Cs effluent from the middle column reached the WAC after processing 590 BVs. Cs breakthrough from the polish column began at 590 BVs, reaching 6.3E-3 µCi/mL or 4.3E-3% Cs breakthrough after processing 844 BVs of feed." @default.
- W3048320094 created "2020-08-13" @default.
- W3048320094 creator A5002249288 @default.
- W3048320094 creator A5009045616 @default.
- W3048320094 creator A5028097787 @default.
- W3048320094 creator A5075684746 @default.
- W3048320094 creator A5079338340 @default.
- W3048320094 date "2019-08-30" @default.
- W3048320094 modified "2023-09-27" @default.
- W3048320094 title "Cesium Ion Exchange Testing Using a Three-Column System with Crystalline Silicotitanate and Hanford Tank Waste 241-AP-107" @default.
- W3048320094 doi "https://doi.org/10.2172/1645027" @default.
- W3048320094 hasPublicationYear "2019" @default.
- W3048320094 type Work @default.
- W3048320094 sameAs 3048320094 @default.
- W3048320094 citedByCount "7" @default.
- W3048320094 countsByYear W30483200942020 @default.
- W3048320094 countsByYear W30483200942021 @default.
- W3048320094 crossrefType "report" @default.
- W3048320094 hasAuthorship W3048320094A5002249288 @default.
- W3048320094 hasAuthorship W3048320094A5009045616 @default.
- W3048320094 hasAuthorship W3048320094A5028097787 @default.
- W3048320094 hasAuthorship W3048320094A5075684746 @default.
- W3048320094 hasAuthorship W3048320094A5079338340 @default.
- W3048320094 hasBestOaLocation W30483200942 @default.
- W3048320094 hasConcept C105795698 @default.
- W3048320094 hasConcept C117760992 @default.
- W3048320094 hasConcept C127413603 @default.
- W3048320094 hasConcept C128489963 @default.
- W3048320094 hasConcept C145148216 @default.
- W3048320094 hasConcept C16685009 @default.
- W3048320094 hasConcept C178790620 @default.
- W3048320094 hasConcept C185592680 @default.
- W3048320094 hasConcept C22507642 @default.
- W3048320094 hasConcept C2778022349 @default.
- W3048320094 hasConcept C2778192726 @default.
- W3048320094 hasConcept C33923547 @default.
- W3048320094 hasConcept C39432304 @default.
- W3048320094 hasConcept C519659679 @default.
- W3048320094 hasConcept C548081761 @default.
- W3048320094 hasConcept C71924100 @default.
- W3048320094 hasConcept C89690796 @default.
- W3048320094 hasConcept C94061648 @default.
- W3048320094 hasConceptScore W3048320094C105795698 @default.
- W3048320094 hasConceptScore W3048320094C117760992 @default.
- W3048320094 hasConceptScore W3048320094C127413603 @default.
- W3048320094 hasConceptScore W3048320094C128489963 @default.
- W3048320094 hasConceptScore W3048320094C145148216 @default.
- W3048320094 hasConceptScore W3048320094C16685009 @default.
- W3048320094 hasConceptScore W3048320094C178790620 @default.
- W3048320094 hasConceptScore W3048320094C185592680 @default.
- W3048320094 hasConceptScore W3048320094C22507642 @default.
- W3048320094 hasConceptScore W3048320094C2778022349 @default.
- W3048320094 hasConceptScore W3048320094C2778192726 @default.
- W3048320094 hasConceptScore W3048320094C33923547 @default.
- W3048320094 hasConceptScore W3048320094C39432304 @default.
- W3048320094 hasConceptScore W3048320094C519659679 @default.
- W3048320094 hasConceptScore W3048320094C548081761 @default.
- W3048320094 hasConceptScore W3048320094C71924100 @default.
- W3048320094 hasConceptScore W3048320094C89690796 @default.
- W3048320094 hasConceptScore W3048320094C94061648 @default.
- W3048320094 hasLocation W30483200941 @default.
- W3048320094 hasLocation W30483200942 @default.
- W3048320094 hasOpenAccess W3048320094 @default.
- W3048320094 hasPrimaryLocation W30483200941 @default.
- W3048320094 hasRelatedWork W111171497 @default.
- W3048320094 hasRelatedWork W1563539181 @default.
- W3048320094 hasRelatedWork W1579293205 @default.
- W3048320094 hasRelatedWork W1970539305 @default.
- W3048320094 hasRelatedWork W2088859276 @default.
- W3048320094 hasRelatedWork W2113146009 @default.
- W3048320094 hasRelatedWork W2160901493 @default.
- W3048320094 hasRelatedWork W3036637158 @default.
- W3048320094 hasRelatedWork W3141070925 @default.
- W3048320094 hasRelatedWork W93069315 @default.
- W3048320094 isParatext "false" @default.
- W3048320094 isRetracted "false" @default.
- W3048320094 magId "3048320094" @default.
- W3048320094 workType "report" @default.