Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048322577> ?p ?o ?g. }
- W3048322577 endingPage "2340" @default.
- W3048322577 startingPage "2326" @default.
- W3048322577 abstract "Significance Statement Genome-wide association studies (GWAS) are a powerful tool to identify genetic variants associated with CKD. However, knowledge of CKD-relevant target tissues and cell types important in the pathogenesis is incomplete. Integrating large-scale kidney function GWAS with gene expression datasets identified kidney and liver as the primary organs for kidney function traits. In the kidney, proximal tubule was the critical cell type for eGFR and urate, as well as for monogenic electrolyte or metabolic disease genes. Podocytes showed enrichment of genes implicated in glomerular disease. Compendia connecting traits, genes, and cell types allow further prioritization of genes in GWAS loci, enabling mechanistic studies. Background Genetic variants identified in genome-wide association studies (GWAS) are often not specific enough to reveal complex underlying physiology. By integrating RNA-seq data and GWAS summary statistics, novel computational methods allow unbiased identification of trait-relevant tissues and cell types. Methods The CKDGen consortium provided GWAS summary data for eGFR, urinary albumin-creatinine ratio (UACR), BUN, and serum urate. Genotype-Tissue Expression Project (GTEx) RNA-seq data were used to construct the top 10% specifically expressed genes for each of 53 tissues followed by linkage disequilibrium (LD) score–based enrichment testing for each trait. Similar procedures were performed for five kidney single-cell RNA-seq datasets from humans and mice and for a microdissected tubule RNA-seq dataset from rat. Gene set enrichment analyses were also conducted for genes implicated in Mendelian kidney diseases. Results Across 53 tissues, genes in kidney function–associated GWAS loci were enriched in kidney ( P =9.1E-8 for eGFR; P =1.2E-5 for urate) and liver ( P =6.8·10 -5 for eGFR). In the kidney, proximal tubule was enriched in humans ( P =8.5E-5 for eGFR; P =7.8E-6 for urate) and mice ( P =0.0003 for eGFR; P =0.0002 for urate) and confirmed as the primary cell type in microdissected tubules and organoids. Gene set enrichment analysis supported this and showed enrichment of genes implicated in monogenic glomerular diseases in podocytes. A systematic approach generated a comprehensive list of GWAS genes prioritized by cell type–specific expression. Conclusions Integration of GWAS statistics of kidney function traits and gene expression data identified relevant tissues and cell types, as a basis for further mechanistic studies to understand GWAS loci." @default.
- W3048322577 created "2020-08-13" @default.
- W3048322577 creator A5010058481 @default.
- W3048322577 creator A5013369399 @default.
- W3048322577 creator A5023214008 @default.
- W3048322577 creator A5030007136 @default.
- W3048322577 creator A5031541037 @default.
- W3048322577 creator A5043560883 @default.
- W3048322577 creator A5071554578 @default.
- W3048322577 creator A5081670625 @default.
- W3048322577 date "2020-08-06" @default.
- W3048322577 modified "2023-10-18" @default.
- W3048322577 title "Integration of GWAS Summary Statistics and Gene Expression Reveals Target Cell Types Underlying Kidney Function Traits" @default.
- W3048322577 cites W1533942137 @default.
- W3048322577 cites W1967632907 @default.
- W3048322577 cites W1973002697 @default.
- W3048322577 cites W1979283544 @default.
- W3048322577 cites W1993616000 @default.
- W3048322577 cites W2018838463 @default.
- W3048322577 cites W2031389630 @default.
- W3048322577 cites W2051314902 @default.
- W3048322577 cites W2051948045 @default.
- W3048322577 cites W2058401000 @default.
- W3048322577 cites W2069295116 @default.
- W3048322577 cites W2071010503 @default.
- W3048322577 cites W2093192308 @default.
- W3048322577 cites W2096791516 @default.
- W3048322577 cites W2108525019 @default.
- W3048322577 cites W2110797318 @default.
- W3048322577 cites W2111410841 @default.
- W3048322577 cites W2119711419 @default.
- W3048322577 cites W2128058002 @default.
- W3048322577 cites W2153860431 @default.
- W3048322577 cites W2156564520 @default.
- W3048322577 cites W2195783463 @default.
- W3048322577 cites W2222653645 @default.
- W3048322577 cites W2279734831 @default.
- W3048322577 cites W2301340697 @default.
- W3048322577 cites W2406250479 @default.
- W3048322577 cites W2411709723 @default.
- W3048322577 cites W2607179358 @default.
- W3048322577 cites W2613208746 @default.
- W3048322577 cites W2742449822 @default.
- W3048322577 cites W2753051611 @default.
- W3048322577 cites W2777388159 @default.
- W3048322577 cites W2788348358 @default.
- W3048322577 cites W2794480084 @default.
- W3048322577 cites W2795687816 @default.
- W3048322577 cites W2796170779 @default.
- W3048322577 cites W2804045866 @default.
- W3048322577 cites W2809988035 @default.
- W3048322577 cites W2887326710 @default.
- W3048322577 cites W2894064654 @default.
- W3048322577 cites W2894687190 @default.
- W3048322577 cites W2899224630 @default.
- W3048322577 cites W2901335962 @default.
- W3048322577 cites W2903180508 @default.
- W3048322577 cites W2903782905 @default.
- W3048322577 cites W2907333597 @default.
- W3048322577 cites W2917263971 @default.
- W3048322577 cites W2944540884 @default.
- W3048322577 cites W2947278243 @default.
- W3048322577 cites W2949693884 @default.
- W3048322577 cites W2950885009 @default.
- W3048322577 cites W2952673268 @default.
- W3048322577 cites W2953357410 @default.
- W3048322577 cites W2954186030 @default.
- W3048322577 cites W2955090777 @default.
- W3048322577 cites W2956245605 @default.
- W3048322577 cites W2962979703 @default.
- W3048322577 cites W2965078667 @default.
- W3048322577 cites W2969497424 @default.
- W3048322577 cites W2977833465 @default.
- W3048322577 cites W2981346196 @default.
- W3048322577 cites W2999081734 @default.
- W3048322577 cites W4213108508 @default.
- W3048322577 doi "https://doi.org/10.1681/asn.2020010051" @default.
- W3048322577 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7609008" @default.
- W3048322577 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32764137" @default.
- W3048322577 hasPublicationYear "2020" @default.
- W3048322577 type Work @default.
- W3048322577 sameAs 3048322577 @default.
- W3048322577 citedByCount "22" @default.
- W3048322577 countsByYear W30483225772020 @default.
- W3048322577 countsByYear W30483225772021 @default.
- W3048322577 countsByYear W30483225772022 @default.
- W3048322577 countsByYear W30483225772023 @default.
- W3048322577 crossrefType "journal-article" @default.
- W3048322577 hasAuthorship W3048322577A5010058481 @default.
- W3048322577 hasAuthorship W3048322577A5013369399 @default.
- W3048322577 hasAuthorship W3048322577A5023214008 @default.
- W3048322577 hasAuthorship W3048322577A5030007136 @default.
- W3048322577 hasAuthorship W3048322577A5031541037 @default.
- W3048322577 hasAuthorship W3048322577A5043560883 @default.
- W3048322577 hasAuthorship W3048322577A5071554578 @default.
- W3048322577 hasAuthorship W3048322577A5081670625 @default.
- W3048322577 hasBestOaLocation W30483225771 @default.
- W3048322577 hasConcept C104317684 @default.