Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048331456> ?p ?o ?g. }
- W3048331456 endingPage "103717" @default.
- W3048331456 startingPage "103717" @default.
- W3048331456 abstract "Understanding multiphase flow in porous media, especially how velocity is distributed at the pore-scale, has been the aim of several studies. However, these studies address the recirculation behavior inside the trapped phase experimentally without any comprehensive numerical study of the impact of different governing mechanisms related to the fluid configurations and properties, including drag force and capillary number analysis at low capillary number regime. In this study, we analyzed the recirculation phenomenon inside the trapped phase for various displacement mechanisms, fluid configurations, and dynamic properties. To simulate the pore-scale displacement at low capillary number, we used a filtered surface-force formulation of volume of fluid method, which was implemented in a separately available solver for OpenFoam package. The results showed that within the ranges of capillary number of invading phase analyzed in this study (in the order of 1 × 10−7 to 1 × 10−2), the recirculation phenomenon exists in trapped phases. During the imbibition mechanism, two stagnant regions are created adjacent to the fluid-fluid interface inside the invading fluid. Drag-force analysis on fluid-fluid interfaces shows that during imbibition the maximum force is exerted near the center of the interface, whereas during drainage more force is applied on two elongated interface tails on a solid surface. The centroids are elongated parallel to the interface during drainage and perpendicularly during imbibition, which is in concordance with drag-force distribution along with the interface. The existence of a solid surface near the fluid-fluid interface affects the recirculation process in a way that one or more centroids can be created depending on displacement mechanisms. When the ratio of trapped-phase radius to cavity depth is lower, two simultaneous recirculation zones are formed inside the invading and trapped phases While the changes in viscosity ratio and interfacial tension shifted the centroid location inside the trapped zone, the center of rotation seems to be independent of injection velocity. The average velocity of trapped phase is individually a logarithmic function of the surface tension and fluids viscosity ratio. The stationariness of centroid results in a linear relationship between the average velocity inside the trapped zone and injection velocity. For all ranges of viscosity ratios, a linear relationship between the capillary number of invading and trapped phase is obtained. The findings of this study lead to a better understanding of trapping and mobilization mechanisms in microchannels where various forces are acting on fluid-fluid interfaces." @default.
- W3048331456 created "2020-08-13" @default.
- W3048331456 creator A5044940724 @default.
- W3048331456 creator A5048868486 @default.
- W3048331456 creator A5064645846 @default.
- W3048331456 date "2020-11-01" @default.
- W3048331456 modified "2023-10-14" @default.
- W3048331456 title "Direct numerical simulation of trapped-phase recirculation at low capillary number" @default.
- W3048331456 cites W1971587876 @default.
- W3048331456 cites W1973265201 @default.
- W3048331456 cites W1982379865 @default.
- W3048331456 cites W1992001630 @default.
- W3048331456 cites W1994124104 @default.
- W3048331456 cites W1998740619 @default.
- W3048331456 cites W2000872082 @default.
- W3048331456 cites W2002825244 @default.
- W3048331456 cites W2005297976 @default.
- W3048331456 cites W2020114772 @default.
- W3048331456 cites W2022121311 @default.
- W3048331456 cites W2023526834 @default.
- W3048331456 cites W2026253355 @default.
- W3048331456 cites W2029434326 @default.
- W3048331456 cites W2044947659 @default.
- W3048331456 cites W2054950515 @default.
- W3048331456 cites W2065772661 @default.
- W3048331456 cites W2078999146 @default.
- W3048331456 cites W2079173970 @default.
- W3048331456 cites W2080922987 @default.
- W3048331456 cites W2085618560 @default.
- W3048331456 cites W2100758989 @default.
- W3048331456 cites W2110187357 @default.
- W3048331456 cites W2121453294 @default.
- W3048331456 cites W2128839778 @default.
- W3048331456 cites W2129489588 @default.
- W3048331456 cites W2135561574 @default.
- W3048331456 cites W2137715994 @default.
- W3048331456 cites W2145616370 @default.
- W3048331456 cites W2168575889 @default.
- W3048331456 cites W2219012799 @default.
- W3048331456 cites W2580742338 @default.
- W3048331456 cites W2727518028 @default.
- W3048331456 cites W2768272593 @default.
- W3048331456 cites W2769873992 @default.
- W3048331456 cites W2790916074 @default.
- W3048331456 cites W2792182274 @default.
- W3048331456 cites W2795121211 @default.
- W3048331456 cites W2808612346 @default.
- W3048331456 cites W2886110352 @default.
- W3048331456 cites W2889149611 @default.
- W3048331456 cites W2908356187 @default.
- W3048331456 cites W2935659908 @default.
- W3048331456 cites W2976696861 @default.
- W3048331456 cites W2980073440 @default.
- W3048331456 cites W2999463771 @default.
- W3048331456 cites W747848254 @default.
- W3048331456 doi "https://doi.org/10.1016/j.advwatres.2020.103717" @default.
- W3048331456 hasPublicationYear "2020" @default.
- W3048331456 type Work @default.
- W3048331456 sameAs 3048331456 @default.
- W3048331456 citedByCount "4" @default.
- W3048331456 countsByYear W30483314562021 @default.
- W3048331456 countsByYear W30483314562022 @default.
- W3048331456 crossrefType "journal-article" @default.
- W3048331456 hasAuthorship W3048331456A5044940724 @default.
- W3048331456 hasAuthorship W3048331456A5048868486 @default.
- W3048331456 hasAuthorship W3048331456A5064645846 @default.
- W3048331456 hasBestOaLocation W30483314561 @default.
- W3048331456 hasConcept C105569014 @default.
- W3048331456 hasConcept C107551265 @default.
- W3048331456 hasConcept C121332964 @default.
- W3048331456 hasConcept C127210992 @default.
- W3048331456 hasConcept C15744967 @default.
- W3048331456 hasConcept C159985019 @default.
- W3048331456 hasConcept C192562407 @default.
- W3048331456 hasConcept C196806460 @default.
- W3048331456 hasConcept C2779379648 @default.
- W3048331456 hasConcept C38349280 @default.
- W3048331456 hasConcept C542102704 @default.
- W3048331456 hasConcept C57879066 @default.
- W3048331456 hasConcept C6648577 @default.
- W3048331456 hasConcept C72921944 @default.
- W3048331456 hasConcept C90278072 @default.
- W3048331456 hasConceptScore W3048331456C105569014 @default.
- W3048331456 hasConceptScore W3048331456C107551265 @default.
- W3048331456 hasConceptScore W3048331456C121332964 @default.
- W3048331456 hasConceptScore W3048331456C127210992 @default.
- W3048331456 hasConceptScore W3048331456C15744967 @default.
- W3048331456 hasConceptScore W3048331456C159985019 @default.
- W3048331456 hasConceptScore W3048331456C192562407 @default.
- W3048331456 hasConceptScore W3048331456C196806460 @default.
- W3048331456 hasConceptScore W3048331456C2779379648 @default.
- W3048331456 hasConceptScore W3048331456C38349280 @default.
- W3048331456 hasConceptScore W3048331456C542102704 @default.
- W3048331456 hasConceptScore W3048331456C57879066 @default.
- W3048331456 hasConceptScore W3048331456C6648577 @default.
- W3048331456 hasConceptScore W3048331456C72921944 @default.
- W3048331456 hasConceptScore W3048331456C90278072 @default.
- W3048331456 hasLocation W30483314561 @default.