Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048331612> ?p ?o ?g. }
- W3048331612 endingPage "123214" @default.
- W3048331612 startingPage "123214" @default.
- W3048331612 abstract "Faced with water shortage, China has set a control target of 7000×108 m3 of water use in 2030. In the future, how to realize the 2030 water use peak target has become an urgent problem for China to solve. This study aims to predict total water use trend by 2030 under different scenarios and determine the magnitude and time of water use peak. This paper uses the LMDI (Logarithmic Mean Divisia Index) method to decompose the driving factors of the production water use and domestic water use in 2003–2017, and for the first time, combines the scenario analysis and Monte Carlo simulation to analysis the potential evolution trend of production and domestic water use. We found that: (1) Economic development is the primary factor in promoting the increase in total water use, domestic intensity and population scale play a role in promoting increase, production intensity is the primary factor in inhibiting the increase in total water use, industrial structure promotes the decrease of total water use; (2) There are significant differences in the decomposition effects among the three industries; (3) The evolution trend of production and domestic water use is different under the three scenarios. Compared with the baseline scenario, the primary and secondary industry water use decreased more, and the tertiary industry and domestic water use increased less, under the general water-saving scenario and the enhanced water-saving scenario; (4) During the period of 2003–2030, the total water use in all three scenarios experienced an inverted U-shaped. The peaks appeared in 2013, and the total water use (excluding ecological water consumption) was 6078.28×108 m3. The current total water use has reached its peak and been in a stage of stable or even declining stage. Some policy implications are put forward related to our empirical results." @default.
- W3048331612 created "2020-08-13" @default.
- W3048331612 creator A5019292861 @default.
- W3048331612 creator A5022097560 @default.
- W3048331612 creator A5022437403 @default.
- W3048331612 creator A5042037006 @default.
- W3048331612 date "2021-01-01" @default.
- W3048331612 modified "2023-10-16" @default.
- W3048331612 title "Can China achieve its water use peaking in 2030? A scenario analysis based on LMDI and Monte Carlo method" @default.
- W3048331612 cites W1499187656 @default.
- W3048331612 cites W1522204718 @default.
- W3048331612 cites W1979919415 @default.
- W3048331612 cites W1980058743 @default.
- W3048331612 cites W1990310464 @default.
- W3048331612 cites W2009276169 @default.
- W3048331612 cites W2016960263 @default.
- W3048331612 cites W2019721667 @default.
- W3048331612 cites W2029371827 @default.
- W3048331612 cites W2034621243 @default.
- W3048331612 cites W2072162735 @default.
- W3048331612 cites W2074002081 @default.
- W3048331612 cites W2083336094 @default.
- W3048331612 cites W2090635835 @default.
- W3048331612 cites W2150002313 @default.
- W3048331612 cites W2155745365 @default.
- W3048331612 cites W2188274362 @default.
- W3048331612 cites W2207717133 @default.
- W3048331612 cites W2471148825 @default.
- W3048331612 cites W2547378489 @default.
- W3048331612 cites W2551807477 @default.
- W3048331612 cites W2557179909 @default.
- W3048331612 cites W2582180205 @default.
- W3048331612 cites W2605044621 @default.
- W3048331612 cites W2609804213 @default.
- W3048331612 cites W2750962140 @default.
- W3048331612 cites W2766990064 @default.
- W3048331612 cites W2791294018 @default.
- W3048331612 cites W2791835239 @default.
- W3048331612 cites W2795656694 @default.
- W3048331612 cites W2884771298 @default.
- W3048331612 cites W2890217232 @default.
- W3048331612 cites W2943751924 @default.
- W3048331612 cites W2954428059 @default.
- W3048331612 cites W2955836481 @default.
- W3048331612 cites W2974234787 @default.
- W3048331612 doi "https://doi.org/10.1016/j.jclepro.2020.123214" @default.
- W3048331612 hasPublicationYear "2021" @default.
- W3048331612 type Work @default.
- W3048331612 sameAs 3048331612 @default.
- W3048331612 citedByCount "38" @default.
- W3048331612 countsByYear W30483316122020 @default.
- W3048331612 countsByYear W30483316122021 @default.
- W3048331612 countsByYear W30483316122022 @default.
- W3048331612 countsByYear W30483316122023 @default.
- W3048331612 crossrefType "journal-article" @default.
- W3048331612 hasAuthorship W3048331612A5019292861 @default.
- W3048331612 hasAuthorship W3048331612A5022097560 @default.
- W3048331612 hasAuthorship W3048331612A5022437403 @default.
- W3048331612 hasAuthorship W3048331612A5042037006 @default.
- W3048331612 hasConcept C105795698 @default.
- W3048331612 hasConcept C110158866 @default.
- W3048331612 hasConcept C139719470 @default.
- W3048331612 hasConcept C144024400 @default.
- W3048331612 hasConcept C149207113 @default.
- W3048331612 hasConcept C149923435 @default.
- W3048331612 hasConcept C153823671 @default.
- W3048331612 hasConcept C162324750 @default.
- W3048331612 hasConcept C166957645 @default.
- W3048331612 hasConcept C186370098 @default.
- W3048331612 hasConcept C18785705 @default.
- W3048331612 hasConcept C18903297 @default.
- W3048331612 hasConcept C191935318 @default.
- W3048331612 hasConcept C19499675 @default.
- W3048331612 hasConcept C205649164 @default.
- W3048331612 hasConcept C2778348673 @default.
- W3048331612 hasConcept C2780083587 @default.
- W3048331612 hasConcept C2908647359 @default.
- W3048331612 hasConcept C33923547 @default.
- W3048331612 hasConcept C39432304 @default.
- W3048331612 hasConcept C50551742 @default.
- W3048331612 hasConcept C51193700 @default.
- W3048331612 hasConcept C524765639 @default.
- W3048331612 hasConcept C86803240 @default.
- W3048331612 hasConcept C87717796 @default.
- W3048331612 hasConcept C97615858 @default.
- W3048331612 hasConceptScore W3048331612C105795698 @default.
- W3048331612 hasConceptScore W3048331612C110158866 @default.
- W3048331612 hasConceptScore W3048331612C139719470 @default.
- W3048331612 hasConceptScore W3048331612C144024400 @default.
- W3048331612 hasConceptScore W3048331612C149207113 @default.
- W3048331612 hasConceptScore W3048331612C149923435 @default.
- W3048331612 hasConceptScore W3048331612C153823671 @default.
- W3048331612 hasConceptScore W3048331612C162324750 @default.
- W3048331612 hasConceptScore W3048331612C166957645 @default.
- W3048331612 hasConceptScore W3048331612C186370098 @default.
- W3048331612 hasConceptScore W3048331612C18785705 @default.
- W3048331612 hasConceptScore W3048331612C18903297 @default.
- W3048331612 hasConceptScore W3048331612C191935318 @default.