Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048341138> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W3048341138 abstract "As an environment-friendly public transport, shared bikes have become an important urban transport, providing cheap and convenient services for urban residents. However, the number of docks of a station in a bike sharing system is fixed when it is built, and there exists imbalance between bike usage and supply in reality. An accurate real-time free dock prediction can help guide users to choose a proper station (with free bikes/docks) to rent or return a bike. Many earlier efforts are paid to do bike sharing prediction based on model-based approaches. Recently, deep neural networks (DNN), like convolutional neural networks (CNN) and recurrent neural networks (RNN), have been introduced to solve traffic prediction problems. However, three are some unsolved issues to make accurate real-time free dock prediction, such as learning complicated temporal variation and periodicity of bike usage, spatial correlations of free docks among different stations, and the impact of external factors like weather. To overcome these challenges, we propose a novel deep neural network model, which combines graph convolution and a residual structure together. We first model a bike sharing system as a weighted graph, and the non-Euclidean spatial correlations among stations (represented by weighted edges in the graph) are extracted by random walk operation in graph convolution layers. Moreover, periodic patterns of free docks in different time scales are captured by a residual structure, and external factors are considered to improve the accuracy of prediction. We also conduct comprehensive experiments based on a public real-world dataset of riding trips from Boston, and the results show that our method outperforms state-of-the-art baselines." @default.
- W3048341138 created "2020-08-13" @default.
- W3048341138 creator A5009917077 @default.
- W3048341138 creator A5013837047 @default.
- W3048341138 creator A5036955263 @default.
- W3048341138 creator A5046775442 @default.
- W3048341138 creator A5070216219 @default.
- W3048341138 date "2020-06-01" @default.
- W3048341138 modified "2023-09-24" @default.
- W3048341138 title "RESGCN: RESidual Graph Convolutional Network based Free Dock Prediction in Bike Sharing System" @default.
- W3048341138 cites W2010323218 @default.
- W3048341138 cites W2062672519 @default.
- W3048341138 cites W2075767181 @default.
- W3048341138 cites W2116341502 @default.
- W3048341138 cites W2297059404 @default.
- W3048341138 cites W2460480794 @default.
- W3048341138 cites W2515292392 @default.
- W3048341138 cites W2742650756 @default.
- W3048341138 cites W2770426760 @default.
- W3048341138 cites W2772724270 @default.
- W3048341138 cites W2884738862 @default.
- W3048341138 cites W2904290664 @default.
- W3048341138 doi "https://doi.org/10.1109/mdm48529.2020.00044" @default.
- W3048341138 hasPublicationYear "2020" @default.
- W3048341138 type Work @default.
- W3048341138 sameAs 3048341138 @default.
- W3048341138 citedByCount "5" @default.
- W3048341138 countsByYear W30483411382022 @default.
- W3048341138 crossrefType "proceedings-article" @default.
- W3048341138 hasAuthorship W3048341138A5009917077 @default.
- W3048341138 hasAuthorship W3048341138A5013837047 @default.
- W3048341138 hasAuthorship W3048341138A5036955263 @default.
- W3048341138 hasAuthorship W3048341138A5046775442 @default.
- W3048341138 hasAuthorship W3048341138A5070216219 @default.
- W3048341138 hasConcept C11413529 @default.
- W3048341138 hasConcept C127413603 @default.
- W3048341138 hasConcept C132525143 @default.
- W3048341138 hasConcept C154945302 @default.
- W3048341138 hasConcept C155512373 @default.
- W3048341138 hasConcept C199104240 @default.
- W3048341138 hasConcept C31258907 @default.
- W3048341138 hasConcept C41008148 @default.
- W3048341138 hasConcept C80444323 @default.
- W3048341138 hasConcept C93073132 @default.
- W3048341138 hasConceptScore W3048341138C11413529 @default.
- W3048341138 hasConceptScore W3048341138C127413603 @default.
- W3048341138 hasConceptScore W3048341138C132525143 @default.
- W3048341138 hasConceptScore W3048341138C154945302 @default.
- W3048341138 hasConceptScore W3048341138C155512373 @default.
- W3048341138 hasConceptScore W3048341138C199104240 @default.
- W3048341138 hasConceptScore W3048341138C31258907 @default.
- W3048341138 hasConceptScore W3048341138C41008148 @default.
- W3048341138 hasConceptScore W3048341138C80444323 @default.
- W3048341138 hasConceptScore W3048341138C93073132 @default.
- W3048341138 hasLocation W30483411381 @default.
- W3048341138 hasOpenAccess W3048341138 @default.
- W3048341138 hasPrimaryLocation W30483411381 @default.
- W3048341138 hasRelatedWork W2130966263 @default.
- W3048341138 hasRelatedWork W2430546716 @default.
- W3048341138 hasRelatedWork W2809253131 @default.
- W3048341138 hasRelatedWork W2938920270 @default.
- W3048341138 hasRelatedWork W2973451922 @default.
- W3048341138 hasRelatedWork W2982145175 @default.
- W3048341138 hasRelatedWork W3094412894 @default.
- W3048341138 hasRelatedWork W3107474891 @default.
- W3048341138 hasRelatedWork W3174094192 @default.
- W3048341138 hasRelatedWork W4292116820 @default.
- W3048341138 isParatext "false" @default.
- W3048341138 isRetracted "false" @default.
- W3048341138 magId "3048341138" @default.
- W3048341138 workType "article" @default.