Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048343208> ?p ?o ?g. }
- W3048343208 endingPage "114037" @default.
- W3048343208 startingPage "114037" @default.
- W3048343208 abstract "This paper develops a computational fluid dynamics capability for simulating the radiative emission from a meteor shock-layer and wake to an external observer. The developed capability includes the impact of radiation and ablation on the meteor flowfield, where coupled radiation accounts for the impact of radiation on the flowfield energy equations and coupled ablation accounts for the injection of ablation species from the meteoroid surface into the flow. This capability includes updated flowfield chemistry and nonequilibrium radiation models, which are compiled from the literature. To provide a level of validation for this capability, the Benešov spectral measurements are considered. Although the meteoroid was likely fragmented at the 47 and 57 km altitudes considered, and the measurement uncertainty is roughly ± 50%, these measurements represent the best available spectral measurements for a relatively large (meter-class) bolide. To determine the equivalent meteoroid diameter for the Benešov simulations, the continuum component of the spectrum in the 570 to 610 nm range is considered. This wavelength range is dominated by air emission from the high pressure and temperature shock-layer in front of the meteoroid, which is simulated with a relatively small uncertainty (compared to the wake emission) and is sensitive to the equivalent meteoroid diameter. Because of these characteristics, the simulated meteoroid diameter is adjusted until the continuum component in this wavelength range matches the measurements. This results in equivalent diameters ranging from 0.62 to 0.9 m. The range of equivalent diameters is due to the various meteoroid geometries considered, where increasing the bluntness decreases the required diameter. Applying these diameters to simulations at 47 and 57 km results in simulated spectra that compare within 30% of the measured values, considering the wavelength integrated values between 400 and 650 nm. This agreement is well within the estimated measurement uncertainty of ± 50%. All major spectral features are captured by the simulations. A comparison with the measured wake-only spectrum suggests that emission from wake locations over 150 m from the meteoroid are the primary source of the small disagreement seen between the measurements and simulations. Overall, the relatively good agreement between the simulations and measurements provides a level of validation for the developed model that has not been previously available. • State-of-the-art meteor flowfield and luminosity model developed for the continuum flow regime. • Developed model includes finite-rate chemistry, nonequilibrium radiation, coupled ablation, and coupled radiation. • Model compares favorably with Benesov spectral radiation measurements at 47 and 57 km altitude. • Favorable comparison with Benesov measurements provides a level of validation not previously demonstrated for a meteor flowfield and radiation model." @default.
- W3048343208 created "2020-08-13" @default.
- W3048343208 creator A5043567184 @default.
- W3048343208 creator A5052230923 @default.
- W3048343208 creator A5072155159 @default.
- W3048343208 date "2021-01-01" @default.
- W3048343208 modified "2023-09-27" @default.
- W3048343208 title "Simulating the Benešov bolide flowfield and spectrum at altitudes of 47 and 57 km" @default.
- W3048343208 cites W1567042017 @default.
- W3048343208 cites W1964493081 @default.
- W3048343208 cites W1975713201 @default.
- W3048343208 cites W1980892677 @default.
- W3048343208 cites W1986436667 @default.
- W3048343208 cites W1992895819 @default.
- W3048343208 cites W1994870335 @default.
- W3048343208 cites W1996651715 @default.
- W3048343208 cites W1999225919 @default.
- W3048343208 cites W2001526405 @default.
- W3048343208 cites W2007553621 @default.
- W3048343208 cites W2010143950 @default.
- W3048343208 cites W2012700137 @default.
- W3048343208 cites W2016974833 @default.
- W3048343208 cites W2024826001 @default.
- W3048343208 cites W2029433592 @default.
- W3048343208 cites W2029672689 @default.
- W3048343208 cites W2030588174 @default.
- W3048343208 cites W2039384924 @default.
- W3048343208 cites W2046533101 @default.
- W3048343208 cites W2050239830 @default.
- W3048343208 cites W2053492351 @default.
- W3048343208 cites W2067925165 @default.
- W3048343208 cites W2075955661 @default.
- W3048343208 cites W2076430302 @default.
- W3048343208 cites W2082722524 @default.
- W3048343208 cites W2083307677 @default.
- W3048343208 cites W2091430432 @default.
- W3048343208 cites W2099028029 @default.
- W3048343208 cites W2108036552 @default.
- W3048343208 cites W2119077611 @default.
- W3048343208 cites W2128309801 @default.
- W3048343208 cites W2146402370 @default.
- W3048343208 cites W2171255811 @default.
- W3048343208 cites W2331673413 @default.
- W3048343208 cites W2467394323 @default.
- W3048343208 cites W2493839294 @default.
- W3048343208 cites W2767850743 @default.
- W3048343208 cites W2790729896 @default.
- W3048343208 cites W2794036073 @default.
- W3048343208 cites W2804541040 @default.
- W3048343208 cites W2805422612 @default.
- W3048343208 cites W2940411402 @default.
- W3048343208 cites W2968270219 @default.
- W3048343208 cites W2981711026 @default.
- W3048343208 cites W3008937830 @default.
- W3048343208 cites W3104156817 @default.
- W3048343208 cites W3192211684 @default.
- W3048343208 cites W3201412881 @default.
- W3048343208 cites W3213907060 @default.
- W3048343208 cites W4231996171 @default.
- W3048343208 cites W4251881012 @default.
- W3048343208 doi "https://doi.org/10.1016/j.icarus.2020.114037" @default.
- W3048343208 hasPublicationYear "2021" @default.
- W3048343208 type Work @default.
- W3048343208 sameAs 3048343208 @default.
- W3048343208 citedByCount "5" @default.
- W3048343208 countsByYear W30483432082021 @default.
- W3048343208 countsByYear W30483432082023 @default.
- W3048343208 crossrefType "journal-article" @default.
- W3048343208 hasAuthorship W3048343208A5043567184 @default.
- W3048343208 hasAuthorship W3048343208A5052230923 @default.
- W3048343208 hasAuthorship W3048343208A5072155159 @default.
- W3048343208 hasBestOaLocation W30483432081 @default.
- W3048343208 hasConcept C121332964 @default.
- W3048343208 hasConcept C127313418 @default.
- W3048343208 hasConcept C153294291 @default.
- W3048343208 hasConcept C8058405 @default.
- W3048343208 hasConcept C87355193 @default.
- W3048343208 hasConcept C91586092 @default.
- W3048343208 hasConceptScore W3048343208C121332964 @default.
- W3048343208 hasConceptScore W3048343208C127313418 @default.
- W3048343208 hasConceptScore W3048343208C153294291 @default.
- W3048343208 hasConceptScore W3048343208C8058405 @default.
- W3048343208 hasConceptScore W3048343208C87355193 @default.
- W3048343208 hasConceptScore W3048343208C91586092 @default.
- W3048343208 hasFunder F4320321006 @default.
- W3048343208 hasLocation W30483432081 @default.
- W3048343208 hasOpenAccess W3048343208 @default.
- W3048343208 hasPrimaryLocation W30483432081 @default.
- W3048343208 hasRelatedWork W2565704209 @default.
- W3048343208 hasRelatedWork W2748952813 @default.
- W3048343208 hasRelatedWork W2767819956 @default.
- W3048343208 hasRelatedWork W2935759653 @default.
- W3048343208 hasRelatedWork W3023536432 @default.
- W3048343208 hasRelatedWork W3105167352 @default.
- W3048343208 hasRelatedWork W4232614301 @default.
- W3048343208 hasRelatedWork W54078636 @default.
- W3048343208 hasRelatedWork W1501425562 @default.
- W3048343208 hasRelatedWork W2954470139 @default.