Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048347864> ?p ?o ?g. }
- W3048347864 endingPage "1596" @default.
- W3048347864 startingPage "1581" @default.
- W3048347864 abstract "The complex dynamics characterizing deformable terrain presents significant impediments toward the real-world viability of locomotive robotics, particularly for legged machines. We explore vertical, robotic jumping as a model task for legged locomotion on presumed-uncharacterized, nonrigid terrain. By integrating Gaussian process (GP)-based regression and evaluation to estimate ground reaction forces as a function of the state, a 1-D jumper acquires the capability to learn forcing profiles exerted by its environment in tandem with achieving its control objective. The GP-based dynamical model initially assumes a baseline rigid, noncompliant surface. As part of an iterative procedure, the optimizer employing this model generates an optimal control strategy to achieve a target jump height. Experiential data recovered from execution on the true surface model are applied to train the GP, in turn, providing the optimizer a more richly informed dynamical model of the environment. The iterative control-learning procedure was rigorously evaluated in experiment, over different surface types, whereby a robotic hopper was challenged to jump to several different target heights. Each task was achieved within ten attempts, over which the terrain's dynamics were learned. With each iteration, GP predictions of ground forcing became incrementally refined, rapidly matching experimental force measurements. The few-iteration convergence demonstrates a fundamental capacity to both estimate and adapt to unknown terrain dynamics in application-realistic time scales, all with control tools amenable to robotic legged locomotion." @default.
- W3048347864 created "2020-08-13" @default.
- W3048347864 creator A5021598469 @default.
- W3048347864 creator A5033990176 @default.
- W3048347864 creator A5036991903 @default.
- W3048347864 creator A5039171820 @default.
- W3048347864 creator A5071675404 @default.
- W3048347864 creator A5078622216 @default.
- W3048347864 date "2021-07-01" @default.
- W3048347864 modified "2023-10-10" @default.
- W3048347864 title "Learning Terrain Dynamics: A Gaussian Process Modeling and Optimal Control Adaptation Framework Applied to Robotic Jumping" @default.
- W3048347864 cites W1512273979 @default.
- W3048347864 cites W1676686791 @default.
- W3048347864 cites W1914756871 @default.
- W3048347864 cites W1974461875 @default.
- W3048347864 cites W1976606095 @default.
- W3048347864 cites W2012043331 @default.
- W3048347864 cites W2012977280 @default.
- W3048347864 cites W2014903366 @default.
- W3048347864 cites W2018705428 @default.
- W3048347864 cites W2022781970 @default.
- W3048347864 cites W2027973545 @default.
- W3048347864 cites W2040316861 @default.
- W3048347864 cites W2046633936 @default.
- W3048347864 cites W2080132051 @default.
- W3048347864 cites W2081024700 @default.
- W3048347864 cites W2085194340 @default.
- W3048347864 cites W2085330455 @default.
- W3048347864 cites W2094460003 @default.
- W3048347864 cites W2123871098 @default.
- W3048347864 cites W2124141852 @default.
- W3048347864 cites W2128131727 @default.
- W3048347864 cites W2140484358 @default.
- W3048347864 cites W2143277772 @default.
- W3048347864 cites W2143717973 @default.
- W3048347864 cites W2150646391 @default.
- W3048347864 cites W2157577161 @default.
- W3048347864 cites W2187330215 @default.
- W3048347864 cites W2197422560 @default.
- W3048347864 cites W2216237868 @default.
- W3048347864 cites W2226901510 @default.
- W3048347864 cites W2288558473 @default.
- W3048347864 cites W2398447810 @default.
- W3048347864 cites W2411824964 @default.
- W3048347864 cites W2413990562 @default.
- W3048347864 cites W2562249655 @default.
- W3048347864 cites W2736884962 @default.
- W3048347864 cites W2737077177 @default.
- W3048347864 cites W2737345556 @default.
- W3048347864 cites W2738707889 @default.
- W3048347864 cites W2771994393 @default.
- W3048347864 cites W2967986481 @default.
- W3048347864 cites W3098713169 @default.
- W3048347864 doi "https://doi.org/10.1109/tcst.2020.3009636" @default.
- W3048347864 hasPublicationYear "2021" @default.
- W3048347864 type Work @default.
- W3048347864 sameAs 3048347864 @default.
- W3048347864 citedByCount "4" @default.
- W3048347864 countsByYear W30483478642022 @default.
- W3048347864 countsByYear W30483478642023 @default.
- W3048347864 crossrefType "journal-article" @default.
- W3048347864 hasAuthorship W3048347864A5021598469 @default.
- W3048347864 hasAuthorship W3048347864A5033990176 @default.
- W3048347864 hasAuthorship W3048347864A5036991903 @default.
- W3048347864 hasAuthorship W3048347864A5039171820 @default.
- W3048347864 hasAuthorship W3048347864A5071675404 @default.
- W3048347864 hasAuthorship W3048347864A5078622216 @default.
- W3048347864 hasBestOaLocation W30483478641 @default.
- W3048347864 hasConcept C111919701 @default.
- W3048347864 hasConcept C121332964 @default.
- W3048347864 hasConcept C127413603 @default.
- W3048347864 hasConcept C133731056 @default.
- W3048347864 hasConcept C134306372 @default.
- W3048347864 hasConcept C154945302 @default.
- W3048347864 hasConcept C161840515 @default.
- W3048347864 hasConcept C162324750 @default.
- W3048347864 hasConcept C163716315 @default.
- W3048347864 hasConcept C18903297 @default.
- W3048347864 hasConcept C197115733 @default.
- W3048347864 hasConcept C2775924081 @default.
- W3048347864 hasConcept C2777303404 @default.
- W3048347864 hasConcept C33923547 @default.
- W3048347864 hasConcept C34413123 @default.
- W3048347864 hasConcept C41008148 @default.
- W3048347864 hasConcept C44154836 @default.
- W3048347864 hasConcept C47446073 @default.
- W3048347864 hasConcept C50522688 @default.
- W3048347864 hasConcept C61326573 @default.
- W3048347864 hasConcept C62520636 @default.
- W3048347864 hasConcept C86803240 @default.
- W3048347864 hasConcept C88337583 @default.
- W3048347864 hasConcept C90509273 @default.
- W3048347864 hasConcept C98045186 @default.
- W3048347864 hasConceptScore W3048347864C111919701 @default.
- W3048347864 hasConceptScore W3048347864C121332964 @default.
- W3048347864 hasConceptScore W3048347864C127413603 @default.
- W3048347864 hasConceptScore W3048347864C133731056 @default.
- W3048347864 hasConceptScore W3048347864C134306372 @default.