Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048351346> ?p ?o ?g. }
Showing items 1 to 63 of
63
with 100 items per page.
- W3048351346 endingPage "661" @default.
- W3048351346 startingPage "657" @default.
- W3048351346 abstract "Traffic Sign recognition is the technology that gives a vehicle the ability to recognize everyday traffic signs that are put on the road. Detection methods are usually classified as color based, shape based, and learning based methods. Recently, Convolutional Neural Networks (CNN) have shown to become the popular solution to image recognition problems. Thanks to the quick execution and high recognition performances the CNNs have greatly enhanced many computer vision tasks. In this paper, we propose a traffic sign recognition system by applying CNN architectures on the LISA traffic sign dataset." @default.
- W3048351346 created "2020-08-13" @default.
- W3048351346 creator A5014335004 @default.
- W3048351346 creator A5015792060 @default.
- W3048351346 creator A5078766422 @default.
- W3048351346 date "2020-08-25" @default.
- W3048351346 modified "2023-09-25" @default.
- W3048351346 title "US Traffic Sign Recognition Using CNNs" @default.
- W3048351346 cites W2077753765 @default.
- W3048351346 cites W2126628495 @default.
- W3048351346 cites W2153567777 @default.
- W3048351346 cites W2182198985 @default.
- W3048351346 cites W2792806930 @default.
- W3048351346 cites W2995609771 @default.
- W3048351346 doi "https://doi.org/10.1007/978-3-030-55190-2_50" @default.
- W3048351346 hasPublicationYear "2020" @default.
- W3048351346 type Work @default.
- W3048351346 sameAs 3048351346 @default.
- W3048351346 citedByCount "1" @default.
- W3048351346 countsByYear W30483513462021 @default.
- W3048351346 crossrefType "book-chapter" @default.
- W3048351346 hasAuthorship W3048351346A5014335004 @default.
- W3048351346 hasAuthorship W3048351346A5015792060 @default.
- W3048351346 hasAuthorship W3048351346A5078766422 @default.
- W3048351346 hasConcept C134306372 @default.
- W3048351346 hasConcept C139676723 @default.
- W3048351346 hasConcept C153180895 @default.
- W3048351346 hasConcept C154945302 @default.
- W3048351346 hasConcept C2983860417 @default.
- W3048351346 hasConcept C31972630 @default.
- W3048351346 hasConcept C33923547 @default.
- W3048351346 hasConcept C41008148 @default.
- W3048351346 hasConcept C6528762 @default.
- W3048351346 hasConcept C81363708 @default.
- W3048351346 hasConceptScore W3048351346C134306372 @default.
- W3048351346 hasConceptScore W3048351346C139676723 @default.
- W3048351346 hasConceptScore W3048351346C153180895 @default.
- W3048351346 hasConceptScore W3048351346C154945302 @default.
- W3048351346 hasConceptScore W3048351346C2983860417 @default.
- W3048351346 hasConceptScore W3048351346C31972630 @default.
- W3048351346 hasConceptScore W3048351346C33923547 @default.
- W3048351346 hasConceptScore W3048351346C41008148 @default.
- W3048351346 hasConceptScore W3048351346C6528762 @default.
- W3048351346 hasConceptScore W3048351346C81363708 @default.
- W3048351346 hasLocation W30483513461 @default.
- W3048351346 hasOpenAccess W3048351346 @default.
- W3048351346 hasPrimaryLocation W30483513461 @default.
- W3048351346 hasRelatedWork W11273282 @default.
- W3048351346 hasRelatedWork W12303988 @default.
- W3048351346 hasRelatedWork W13187899 @default.
- W3048351346 hasRelatedWork W2769812 @default.
- W3048351346 hasRelatedWork W2834797 @default.
- W3048351346 hasRelatedWork W2988963 @default.
- W3048351346 hasRelatedWork W4320778 @default.
- W3048351346 hasRelatedWork W5576225 @default.
- W3048351346 hasRelatedWork W9958333 @default.
- W3048351346 hasRelatedWork W1660204 @default.
- W3048351346 isParatext "false" @default.
- W3048351346 isRetracted "false" @default.
- W3048351346 magId "3048351346" @default.
- W3048351346 workType "book-chapter" @default.