Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048368052> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W3048368052 endingPage "351" @default.
- W3048368052 startingPage "342" @default.
- W3048368052 abstract "Background: The learning-based algorithms provide an ability to automatically estimate and refine GM, WM and CSF. The ground truth manually achieved from the 3T MR image may not be accurate and reliable with poor image intensity contrast. It will seriously influence the classification performance because the supervised learning-based algorithms extremely rely on the ground truth. Recently, the 7T MR images brings about the excellent image intensity contrast, while Structured Random Forest (SRF) performs the pixel-level classification and achieves structural and contextual information in images. Materials and Methods: In this paper, a automatic segmentation algorithm is proposed based on ground truth achieved by the corresponding 7T subjects for segmenting the 3T&1.5T brain tissues using SRF classifiers. Through taking advantage of the 7T brain MR images, we can achieve the highly accuracy and reliable ground truth and then implement the training of SRF classifiers. Our proposed algorithm effectively integrates the T1-weighed images along with the probability maps to train the SRF classifiers for brain tissue segmentation. Results: Specifically, for the mean Dice ratio of all 10 subjects, the proposed method achieved 95.14%±0.9%, 90.17%±1.83%, and 81.96%±4.32% for WM, GM, and CSF. With the experiment results, the proposed algorithm can achieve better performances than other automatic segmentation methods. Further experiments are performed on the 200 3T&1.5T brain MR images of ADNI dataset and our proposed method shows promised performances. Conclusions: The authors have developed and validated a novel fully automated method for 3T brain MR image segmentation." @default.
- W3048368052 created "2020-08-18" @default.
- W3048368052 creator A5047935645 @default.
- W3048368052 creator A5057989629 @default.
- W3048368052 creator A5058280275 @default.
- W3048368052 creator A5091013880 @default.
- W3048368052 date "2021-04-22" @default.
- W3048368052 modified "2023-09-23" @default.
- W3048368052 title "The Learning-based Automatic Segmentation Algorithm of Brain MR Images Based on 7T" @default.
- W3048368052 cites W137456267 @default.
- W3048368052 cites W1977734553 @default.
- W3048368052 cites W1996300805 @default.
- W3048368052 cites W1999960294 @default.
- W3048368052 cites W2003925439 @default.
- W3048368052 cites W2010587020 @default.
- W3048368052 cites W2027246093 @default.
- W3048368052 cites W2027327099 @default.
- W3048368052 cites W2027955893 @default.
- W3048368052 cites W2048700485 @default.
- W3048368052 cites W2055491692 @default.
- W3048368052 cites W2081295822 @default.
- W3048368052 cites W2082526668 @default.
- W3048368052 cites W2092245015 @default.
- W3048368052 cites W2097775060 @default.
- W3048368052 cites W2109077768 @default.
- W3048368052 cites W2111934016 @default.
- W3048368052 cites W2127558098 @default.
- W3048368052 cites W2127890285 @default.
- W3048368052 cites W2129812935 @default.
- W3048368052 cites W2139212933 @default.
- W3048368052 cites W2144216948 @default.
- W3048368052 cites W2157848968 @default.
- W3048368052 cites W2168031320 @default.
- W3048368052 cites W4212883601 @default.
- W3048368052 cites W97667379 @default.
- W3048368052 doi "https://doi.org/10.2174/1573405616666200806171509" @default.
- W3048368052 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32767946" @default.
- W3048368052 hasPublicationYear "2021" @default.
- W3048368052 type Work @default.
- W3048368052 sameAs 3048368052 @default.
- W3048368052 citedByCount "1" @default.
- W3048368052 countsByYear W30483680522022 @default.
- W3048368052 crossrefType "journal-article" @default.
- W3048368052 hasAuthorship W3048368052A5047935645 @default.
- W3048368052 hasAuthorship W3048368052A5057989629 @default.
- W3048368052 hasAuthorship W3048368052A5058280275 @default.
- W3048368052 hasAuthorship W3048368052A5091013880 @default.
- W3048368052 hasConcept C115961682 @default.
- W3048368052 hasConcept C124504099 @default.
- W3048368052 hasConcept C146849305 @default.
- W3048368052 hasConcept C153180895 @default.
- W3048368052 hasConcept C154945302 @default.
- W3048368052 hasConcept C160633673 @default.
- W3048368052 hasConcept C169258074 @default.
- W3048368052 hasConcept C2776502983 @default.
- W3048368052 hasConcept C31972630 @default.
- W3048368052 hasConcept C41008148 @default.
- W3048368052 hasConcept C89600930 @default.
- W3048368052 hasConceptScore W3048368052C115961682 @default.
- W3048368052 hasConceptScore W3048368052C124504099 @default.
- W3048368052 hasConceptScore W3048368052C146849305 @default.
- W3048368052 hasConceptScore W3048368052C153180895 @default.
- W3048368052 hasConceptScore W3048368052C154945302 @default.
- W3048368052 hasConceptScore W3048368052C160633673 @default.
- W3048368052 hasConceptScore W3048368052C169258074 @default.
- W3048368052 hasConceptScore W3048368052C2776502983 @default.
- W3048368052 hasConceptScore W3048368052C31972630 @default.
- W3048368052 hasConceptScore W3048368052C41008148 @default.
- W3048368052 hasConceptScore W3048368052C89600930 @default.
- W3048368052 hasFunder F4320326687 @default.
- W3048368052 hasIssue "3" @default.
- W3048368052 hasLocation W30483680521 @default.
- W3048368052 hasLocation W30483680522 @default.
- W3048368052 hasOpenAccess W3048368052 @default.
- W3048368052 hasPrimaryLocation W30483680521 @default.
- W3048368052 hasRelatedWork W1669643531 @default.
- W3048368052 hasRelatedWork W1721780360 @default.
- W3048368052 hasRelatedWork W2110230079 @default.
- W3048368052 hasRelatedWork W2117664411 @default.
- W3048368052 hasRelatedWork W2117933325 @default.
- W3048368052 hasRelatedWork W2122581818 @default.
- W3048368052 hasRelatedWork W2130151498 @default.
- W3048368052 hasRelatedWork W2157822554 @default.
- W3048368052 hasRelatedWork W2159066190 @default.
- W3048368052 hasRelatedWork W2739874619 @default.
- W3048368052 hasVolume "17" @default.
- W3048368052 isParatext "false" @default.
- W3048368052 isRetracted "false" @default.
- W3048368052 magId "3048368052" @default.
- W3048368052 workType "article" @default.