Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048374680> ?p ?o ?g. }
- W3048374680 endingPage "103734" @default.
- W3048374680 startingPage "103734" @default.
- W3048374680 abstract "Image-based modelling of porous media to study the transport and reaction processes has become an essential tool. The availability of increasingly large image datasets at high resolution creates a need to develop algorithms that can process massive size images at a low computational cost. This study presents an efficient workflow to extract pore networks from large size porous domains using a watershed segmentation with geometrical domain decomposition. The method subdivides a porous image into smaller overlapping subdomains and performs a watershed segmentation on each subdomain in parallel or serial modes of operation to save CPU time or memory RAM, respectively. The computational performance of the algorithm was analyzed on a large size image and found to consume 50 percent less memory and upto 7 times less CPU time than the standard watershed implementation. Pore networks of four massive digital rock images were extracted and the the effective permeability predicted by the networks agreed well with previously investigated values illustrating the accuracy of the method. An additional application of this method, taking advantage of the reduced computational cost, is the upgrading of low-resolution image. It was found that increasing the resolution of a coarse image leads to more accurate predictions by helping the watershed segmenation prouduce a more faithful pore network model. The developed algorithm is implemented in Python, and included in the open source project PoreSpy. It uses highly optimized and efficient modules such as Dask and Numba to obtain the maximum performance. The domain decomposition approach used here will also lend itself well to processing on distributed memory clusters, enabling the processing of even larger porous domains." @default.
- W3048374680 created "2020-08-18" @default.
- W3048374680 creator A5017680491 @default.
- W3048374680 creator A5038709614 @default.
- W3048374680 creator A5071327704 @default.
- W3048374680 date "2020-11-01" @default.
- W3048374680 modified "2023-10-09" @default.
- W3048374680 title "Efficient extraction of pore networks from massive tomograms via geometric domain decomposition" @default.
- W3048374680 cites W1518641734 @default.
- W3048374680 cites W1652775531 @default.
- W3048374680 cites W1969580165 @default.
- W3048374680 cites W1973888660 @default.
- W3048374680 cites W1993089263 @default.
- W3048374680 cites W2018905043 @default.
- W3048374680 cites W2026316104 @default.
- W3048374680 cites W2056545258 @default.
- W3048374680 cites W2058916022 @default.
- W3048374680 cites W2112053550 @default.
- W3048374680 cites W2124260943 @default.
- W3048374680 cites W2145287259 @default.
- W3048374680 cites W2153513624 @default.
- W3048374680 cites W2196306872 @default.
- W3048374680 cites W2211838318 @default.
- W3048374680 cites W2295357942 @default.
- W3048374680 cites W2337947566 @default.
- W3048374680 cites W2403618360 @default.
- W3048374680 cites W2527672088 @default.
- W3048374680 cites W2596634384 @default.
- W3048374680 cites W2608528415 @default.
- W3048374680 cites W2749066189 @default.
- W3048374680 cites W2769361912 @default.
- W3048374680 cites W2783170020 @default.
- W3048374680 cites W2896143938 @default.
- W3048374680 cites W2896790556 @default.
- W3048374680 cites W2900880887 @default.
- W3048374680 cites W2907329802 @default.
- W3048374680 cites W2907443719 @default.
- W3048374680 cites W2914151918 @default.
- W3048374680 cites W2923077062 @default.
- W3048374680 cites W2942922338 @default.
- W3048374680 cites W2952801256 @default.
- W3048374680 cites W2959543929 @default.
- W3048374680 cites W2973081567 @default.
- W3048374680 cites W2984232331 @default.
- W3048374680 cites W3006320891 @default.
- W3048374680 cites W3008518994 @default.
- W3048374680 cites W3009690168 @default.
- W3048374680 cites W3011981873 @default.
- W3048374680 cites W3017259053 @default.
- W3048374680 cites W3103145119 @default.
- W3048374680 cites W3149061742 @default.
- W3048374680 cites W4251431888 @default.
- W3048374680 cites W766808688 @default.
- W3048374680 doi "https://doi.org/10.1016/j.advwatres.2020.103734" @default.
- W3048374680 hasPublicationYear "2020" @default.
- W3048374680 type Work @default.
- W3048374680 sameAs 3048374680 @default.
- W3048374680 citedByCount "10" @default.
- W3048374680 countsByYear W30483746802021 @default.
- W3048374680 countsByYear W30483746802022 @default.
- W3048374680 countsByYear W30483746802023 @default.
- W3048374680 crossrefType "journal-article" @default.
- W3048374680 hasAuthorship W3048374680A5017680491 @default.
- W3048374680 hasAuthorship W3048374680A5038709614 @default.
- W3048374680 hasAuthorship W3048374680A5071327704 @default.
- W3048374680 hasConcept C113775141 @default.
- W3048374680 hasConcept C11413529 @default.
- W3048374680 hasConcept C115961682 @default.
- W3048374680 hasConcept C127413603 @default.
- W3048374680 hasConcept C135628077 @default.
- W3048374680 hasConcept C150547873 @default.
- W3048374680 hasConcept C154945302 @default.
- W3048374680 hasConcept C173608175 @default.
- W3048374680 hasConcept C177212765 @default.
- W3048374680 hasConcept C198880260 @default.
- W3048374680 hasConcept C31972630 @default.
- W3048374680 hasConcept C41008148 @default.
- W3048374680 hasConcept C459310 @default.
- W3048374680 hasConcept C66938386 @default.
- W3048374680 hasConcept C77088390 @default.
- W3048374680 hasConcept C89600930 @default.
- W3048374680 hasConceptScore W3048374680C113775141 @default.
- W3048374680 hasConceptScore W3048374680C11413529 @default.
- W3048374680 hasConceptScore W3048374680C115961682 @default.
- W3048374680 hasConceptScore W3048374680C127413603 @default.
- W3048374680 hasConceptScore W3048374680C135628077 @default.
- W3048374680 hasConceptScore W3048374680C150547873 @default.
- W3048374680 hasConceptScore W3048374680C154945302 @default.
- W3048374680 hasConceptScore W3048374680C173608175 @default.
- W3048374680 hasConceptScore W3048374680C177212765 @default.
- W3048374680 hasConceptScore W3048374680C198880260 @default.
- W3048374680 hasConceptScore W3048374680C31972630 @default.
- W3048374680 hasConceptScore W3048374680C41008148 @default.
- W3048374680 hasConceptScore W3048374680C459310 @default.
- W3048374680 hasConceptScore W3048374680C66938386 @default.
- W3048374680 hasConceptScore W3048374680C77088390 @default.
- W3048374680 hasConceptScore W3048374680C89600930 @default.
- W3048374680 hasFunder F4320334593 @default.