Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048377172> ?p ?o ?g. }
- W3048377172 endingPage "258" @default.
- W3048377172 startingPage "239" @default.
- W3048377172 abstract "Abstract. Snowpack models simulate the evolution of the snow stratigraphy based on meteorological inputs and have the potential to support avalanche risk management operations with complementary information relevant for their avalanche hazard assessment, especially in data-sparse regions or at times of unfavorable weather and hazard conditions. However, the adoption of snowpack models in operational avalanche forecasting has been limited, predominantly due to missing data processing algorithms and uncertainty around model validity. Thus, to enhance the usefulness of snowpack models for the avalanche industry, numerical methods are required that evaluate and summarize snowpack model output in accessible and relevant ways. We present algorithms that compare and assess generic snowpack data from both human observations and models, which consist of multidimensional sequences describing the snow characteristics of grain type, hardness, and age. Our approach exploits Dynamic Time Warping, a well-established method in the data sciences, to match layers between snow profiles and thereby align them. The similarity of the aligned profiles is then evaluated by our independent similarity measure based on characteristics relevant for avalanche hazard assessment. Since our methods provide the necessary quantitative link to data clustering and aggregating methods, we demonstrate how snowpack model output can be grouped and summarized according to similar hazard conditions. By emulating aspects of the human avalanche hazard assessment process, our methods aim to promote the operational application of snowpack models so that avalanche forecasters can begin to build an understanding of how to interpret and trust operational snowpack simulations." @default.
- W3048377172 created "2020-08-18" @default.
- W3048377172 creator A5025576164 @default.
- W3048377172 creator A5033261896 @default.
- W3048377172 creator A5037403260 @default.
- W3048377172 creator A5065438853 @default.
- W3048377172 date "2021-01-15" @default.
- W3048377172 modified "2023-10-18" @default.
- W3048377172 title "Snow profile alignment and similarity assessment for aggregating, clustering, and evaluating snowpack model output for avalanche forecasting" @default.
- W3048377172 cites W1249345106 @default.
- W3048377172 cites W1484996118 @default.
- W3048377172 cites W1499472888 @default.
- W3048377172 cites W1503284143 @default.
- W3048377172 cites W1504592712 @default.
- W3048377172 cites W1973395925 @default.
- W3048377172 cites W1979758092 @default.
- W3048377172 cites W1993906971 @default.
- W3048377172 cites W2001462444 @default.
- W3048377172 cites W2003306812 @default.
- W3048377172 cites W2003892620 @default.
- W3048377172 cites W2018313219 @default.
- W3048377172 cites W2029767187 @default.
- W3048377172 cites W2032866090 @default.
- W3048377172 cites W2037537012 @default.
- W3048377172 cites W2052214370 @default.
- W3048377172 cites W2061764800 @default.
- W3048377172 cites W2061942071 @default.
- W3048377172 cites W2075243024 @default.
- W3048377172 cites W2083633371 @default.
- W3048377172 cites W2084616221 @default.
- W3048377172 cites W2084987654 @default.
- W3048377172 cites W2091921805 @default.
- W3048377172 cites W2098235774 @default.
- W3048377172 cites W2107092366 @default.
- W3048377172 cites W2108400301 @default.
- W3048377172 cites W2127175261 @default.
- W3048377172 cites W2128160875 @default.
- W3048377172 cites W2129330015 @default.
- W3048377172 cites W2345802794 @default.
- W3048377172 cites W2349513256 @default.
- W3048377172 cites W2387300659 @default.
- W3048377172 cites W2487770199 @default.
- W3048377172 cites W2513101689 @default.
- W3048377172 cites W2771376774 @default.
- W3048377172 cites W2792634892 @default.
- W3048377172 cites W2891320120 @default.
- W3048377172 cites W2915443864 @default.
- W3048377172 cites W2982678346 @default.
- W3048377172 cites W3009231054 @default.
- W3048377172 cites W3086186479 @default.
- W3048377172 cites W4236296553 @default.
- W3048377172 cites W99017266 @default.
- W3048377172 doi "https://doi.org/10.5194/gmd-14-239-2021" @default.
- W3048377172 hasPublicationYear "2021" @default.
- W3048377172 type Work @default.
- W3048377172 sameAs 3048377172 @default.
- W3048377172 citedByCount "4" @default.
- W3048377172 countsByYear W30483771722022 @default.
- W3048377172 countsByYear W30483771722023 @default.
- W3048377172 crossrefType "journal-article" @default.
- W3048377172 hasAuthorship W3048377172A5025576164 @default.
- W3048377172 hasAuthorship W3048377172A5033261896 @default.
- W3048377172 hasAuthorship W3048377172A5037403260 @default.
- W3048377172 hasAuthorship W3048377172A5065438853 @default.
- W3048377172 hasBestOaLocation W30483771721 @default.
- W3048377172 hasConcept C103278499 @default.
- W3048377172 hasConcept C115961682 @default.
- W3048377172 hasConcept C119857082 @default.
- W3048377172 hasConcept C124101348 @default.
- W3048377172 hasConcept C153294291 @default.
- W3048377172 hasConcept C154945302 @default.
- W3048377172 hasConcept C178790620 @default.
- W3048377172 hasConcept C185592680 @default.
- W3048377172 hasConcept C197046000 @default.
- W3048377172 hasConcept C205649164 @default.
- W3048377172 hasConcept C2778877292 @default.
- W3048377172 hasConcept C39432304 @default.
- W3048377172 hasConcept C41008148 @default.
- W3048377172 hasConcept C49261128 @default.
- W3048377172 hasConcept C73555534 @default.
- W3048377172 hasConceptScore W3048377172C103278499 @default.
- W3048377172 hasConceptScore W3048377172C115961682 @default.
- W3048377172 hasConceptScore W3048377172C119857082 @default.
- W3048377172 hasConceptScore W3048377172C124101348 @default.
- W3048377172 hasConceptScore W3048377172C153294291 @default.
- W3048377172 hasConceptScore W3048377172C154945302 @default.
- W3048377172 hasConceptScore W3048377172C178790620 @default.
- W3048377172 hasConceptScore W3048377172C185592680 @default.
- W3048377172 hasConceptScore W3048377172C197046000 @default.
- W3048377172 hasConceptScore W3048377172C205649164 @default.
- W3048377172 hasConceptScore W3048377172C2778877292 @default.
- W3048377172 hasConceptScore W3048377172C39432304 @default.
- W3048377172 hasConceptScore W3048377172C41008148 @default.
- W3048377172 hasConceptScore W3048377172C49261128 @default.
- W3048377172 hasConceptScore W3048377172C73555534 @default.
- W3048377172 hasFunder F4320334593 @default.
- W3048377172 hasIssue "1" @default.
- W3048377172 hasLocation W30483771721 @default.