Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048377425> ?p ?o ?g. }
- W3048377425 abstract "In this chapter, the authors propose a novel statistical model with a residual correction of downscaling coarse precipitation TRMM 3B43 product. The presented study was carried out over Morocco, and the objective is to improve statistical downscaling for TRMM 3B43 products using a machine learning algorithm. Indeed, the statistical model is based on the Transformed Soil Adjusted Vegetation Index (TSAVI), elevation, and distance from the sea. TSAVI was retrieved using the quantile regression method. Stepwise regression was implemented with the minimization of the Akaike information criterion and Mallows' Cp indicator. The model validation is performed using ten in-situ measurements from rain gauge stations (the most available data). The result shows that the model presents the best fit of the TRMM 3B43 product and good accuracy on estimating precipitation at 1km according to 𝑅2, RMSE, bias, and MAE. In addition, TSAVI improved the model accuracy in the humid bioclimatic stage and in the Saharan region to some extent due to its capacity to reduce soil brightness." @default.
- W3048377425 created "2020-08-18" @default.
- W3048377425 creator A5000689384 @default.
- W3048377425 creator A5003462604 @default.
- W3048377425 creator A5016981570 @default.
- W3048377425 creator A5036319976 @default.
- W3048377425 creator A5044761689 @default.
- W3048377425 creator A5081950582 @default.
- W3048377425 creator A5087836062 @default.
- W3048377425 date "2021-01-01" @default.
- W3048377425 modified "2023-09-29" @default.
- W3048377425 title "Downscaling of Open Coarse Precipitation Data Using a Machine Learning Algorithm" @default.
- W3048377425 cites W1226994850 @default.
- W3048377425 cites W1544108174 @default.
- W3048377425 cites W1918707414 @default.
- W3048377425 cites W1965795233 @default.
- W3048377425 cites W1966029304 @default.
- W3048377425 cites W1981535710 @default.
- W3048377425 cites W1983103686 @default.
- W3048377425 cites W1983745221 @default.
- W3048377425 cites W1989839776 @default.
- W3048377425 cites W1994562517 @default.
- W3048377425 cites W1996528179 @default.
- W3048377425 cites W1996831209 @default.
- W3048377425 cites W2007051388 @default.
- W3048377425 cites W2008308809 @default.
- W3048377425 cites W2012686349 @default.
- W3048377425 cites W2013410295 @default.
- W3048377425 cites W2020467685 @default.
- W3048377425 cites W2023194175 @default.
- W3048377425 cites W2025630661 @default.
- W3048377425 cites W2030716213 @default.
- W3048377425 cites W2031133646 @default.
- W3048377425 cites W2033532744 @default.
- W3048377425 cites W2035201210 @default.
- W3048377425 cites W2039153778 @default.
- W3048377425 cites W2039873147 @default.
- W3048377425 cites W2044092569 @default.
- W3048377425 cites W2047738995 @default.
- W3048377425 cites W2048336613 @default.
- W3048377425 cites W2057571429 @default.
- W3048377425 cites W2065775282 @default.
- W3048377425 cites W2071481613 @default.
- W3048377425 cites W2077421215 @default.
- W3048377425 cites W2093654206 @default.
- W3048377425 cites W2093675520 @default.
- W3048377425 cites W2101936368 @default.
- W3048377425 cites W2134745464 @default.
- W3048377425 cites W2148288900 @default.
- W3048377425 cites W2149425508 @default.
- W3048377425 cites W2152012447 @default.
- W3048377425 cites W2158382008 @default.
- W3048377425 cites W2159636018 @default.
- W3048377425 cites W2172191993 @default.
- W3048377425 cites W2191985424 @default.
- W3048377425 cites W2221612704 @default.
- W3048377425 cites W2259472751 @default.
- W3048377425 cites W2260021327 @default.
- W3048377425 cites W2307724647 @default.
- W3048377425 cites W2322735341 @default.
- W3048377425 cites W2414694296 @default.
- W3048377425 cites W2463437968 @default.
- W3048377425 cites W2491390621 @default.
- W3048377425 cites W2515322126 @default.
- W3048377425 cites W2518426904 @default.
- W3048377425 cites W2589700816 @default.
- W3048377425 cites W2598428419 @default.
- W3048377425 cites W2741949247 @default.
- W3048377425 cites W2759725738 @default.
- W3048377425 cites W2765312775 @default.
- W3048377425 cites W2774659703 @default.
- W3048377425 cites W2788313662 @default.
- W3048377425 cites W2791228247 @default.
- W3048377425 cites W2792826093 @default.
- W3048377425 cites W2799544692 @default.
- W3048377425 cites W2808363984 @default.
- W3048377425 cites W2808556264 @default.
- W3048377425 cites W2890947206 @default.
- W3048377425 cites W2922566830 @default.
- W3048377425 cites W2944658186 @default.
- W3048377425 cites W2961891894 @default.
- W3048377425 cites W2983343904 @default.
- W3048377425 cites W2990688185 @default.
- W3048377425 cites W2998360133 @default.
- W3048377425 cites W2998937918 @default.
- W3048377425 cites W2999507056 @default.
- W3048377425 cites W3004887371 @default.
- W3048377425 cites W3007331501 @default.
- W3048377425 cites W3021853591 @default.
- W3048377425 cites W4241137357 @default.
- W3048377425 cites W4241653265 @default.
- W3048377425 doi "https://doi.org/10.4018/978-1-7998-3343-7.ch001" @default.
- W3048377425 hasPublicationYear "2021" @default.
- W3048377425 type Work @default.
- W3048377425 sameAs 3048377425 @default.
- W3048377425 citedByCount "0" @default.
- W3048377425 crossrefType "book-chapter" @default.
- W3048377425 hasAuthorship W3048377425A5000689384 @default.
- W3048377425 hasAuthorship W3048377425A5003462604 @default.
- W3048377425 hasAuthorship W3048377425A5016981570 @default.