Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048382340> ?p ?o ?g. }
- W3048382340 endingPage "235042" @default.
- W3048382340 startingPage "235042" @default.
- W3048382340 abstract "Monte Carlo simulation (MCS) is one of the most accurate computation methods for dose calculation and image formation in radiation therapy. However, the high computational complexity and long execution time of MCS limits its broad use. In this paper, we present a novel strategy to accelerate MCS using a graphic processing unit (GPU), and we demonstrate the application in mega-voltage (MV) cone-beam computed tomography (CBCT) simulation. A new framework that generates a series of MV projections from a single simulation run is designed specifically for MV-CBCT acquisition. A Geant4-based GPU code for photon simulation is incorporated into the framework for the simulation of photon transport through a phantom volume. The FastEPID method, which accelerates the simulation of MV images, is modified and integrated into the framework. The proposed GPU-based simulation strategy was tested for its accuracy and efficiency in a Catphan 604 phantom and an anthropomorphic pelvis phantom with beam energies at 2.5 MV, 6 MV, and 6 MV FFF. In all cases, the proposed GPU-based simulation demonstrated great simulation accuracy and excellent agreement with measurement and CPU-based simulation in terms of reconstructed image qualities. The MV-CBCT simulation was accelerated by factors of roughly 900-2300 using an NVIDIA Tesla V100 GPU card against a 2.5 GHz AMD Opteron™ Processor 6380." @default.
- W3048382340 created "2020-08-18" @default.
- W3048382340 creator A5003465845 @default.
- W3048382340 creator A5004031626 @default.
- W3048382340 creator A5006418529 @default.
- W3048382340 creator A5016754213 @default.
- W3048382340 creator A5020477182 @default.
- W3048382340 creator A5053397939 @default.
- W3048382340 creator A5059861639 @default.
- W3048382340 creator A5071425342 @default.
- W3048382340 creator A5072237655 @default.
- W3048382340 creator A5073032411 @default.
- W3048382340 creator A5080592989 @default.
- W3048382340 creator A5085461657 @default.
- W3048382340 creator A5087533071 @default.
- W3048382340 date "2020-11-30" @default.
- W3048382340 modified "2023-09-27" @default.
- W3048382340 title "GPU-accelerated Monte Carlo simulation of MV-CBCT" @default.
- W3048382340 cites W1966146945 @default.
- W3048382340 cites W1969878828 @default.
- W3048382340 cites W1973865937 @default.
- W3048382340 cites W1979399612 @default.
- W3048382340 cites W1983416412 @default.
- W3048382340 cites W1986217883 @default.
- W3048382340 cites W1986256238 @default.
- W3048382340 cites W2000076883 @default.
- W3048382340 cites W2001632405 @default.
- W3048382340 cites W2003327790 @default.
- W3048382340 cites W2015290878 @default.
- W3048382340 cites W2015475713 @default.
- W3048382340 cites W2017390171 @default.
- W3048382340 cites W2028695109 @default.
- W3048382340 cites W2029927888 @default.
- W3048382340 cites W2030682531 @default.
- W3048382340 cites W2049242735 @default.
- W3048382340 cites W2051175949 @default.
- W3048382340 cites W2062031442 @default.
- W3048382340 cites W2063023042 @default.
- W3048382340 cites W2065416138 @default.
- W3048382340 cites W2071632269 @default.
- W3048382340 cites W2074343813 @default.
- W3048382340 cites W2074442330 @default.
- W3048382340 cites W2085188303 @default.
- W3048382340 cites W2090684561 @default.
- W3048382340 cites W2095734710 @default.
- W3048382340 cites W2114674358 @default.
- W3048382340 cites W2116085429 @default.
- W3048382340 cites W2128158076 @default.
- W3048382340 cites W2128881154 @default.
- W3048382340 cites W2131617475 @default.
- W3048382340 cites W2136759398 @default.
- W3048382340 cites W2137920044 @default.
- W3048382340 cites W2138237558 @default.
- W3048382340 cites W2142723533 @default.
- W3048382340 cites W2157400104 @default.
- W3048382340 cites W2157812230 @default.
- W3048382340 cites W2166163757 @default.
- W3048382340 cites W2506695027 @default.
- W3048382340 cites W2620282946 @default.
- W3048382340 cites W2884642797 @default.
- W3048382340 cites W2900441878 @default.
- W3048382340 cites W2905669307 @default.
- W3048382340 cites W2942715559 @default.
- W3048382340 cites W3014997004 @default.
- W3048382340 cites W3019174820 @default.
- W3048382340 cites W3101694186 @default.
- W3048382340 cites W3104118572 @default.
- W3048382340 cites W3124937987 @default.
- W3048382340 doi "https://doi.org/10.1088/1361-6560/abaeba" @default.
- W3048382340 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33263311" @default.
- W3048382340 hasPublicationYear "2020" @default.
- W3048382340 type Work @default.
- W3048382340 sameAs 3048382340 @default.
- W3048382340 citedByCount "3" @default.
- W3048382340 countsByYear W30483823402021 @default.
- W3048382340 countsByYear W30483823402022 @default.
- W3048382340 countsByYear W30483823402023 @default.
- W3048382340 crossrefType "journal-article" @default.
- W3048382340 hasAuthorship W3048382340A5003465845 @default.
- W3048382340 hasAuthorship W3048382340A5004031626 @default.
- W3048382340 hasAuthorship W3048382340A5006418529 @default.
- W3048382340 hasAuthorship W3048382340A5016754213 @default.
- W3048382340 hasAuthorship W3048382340A5020477182 @default.
- W3048382340 hasAuthorship W3048382340A5053397939 @default.
- W3048382340 hasAuthorship W3048382340A5059861639 @default.
- W3048382340 hasAuthorship W3048382340A5071425342 @default.
- W3048382340 hasAuthorship W3048382340A5072237655 @default.
- W3048382340 hasAuthorship W3048382340A5073032411 @default.
- W3048382340 hasAuthorship W3048382340A5080592989 @default.
- W3048382340 hasAuthorship W3048382340A5085461657 @default.
- W3048382340 hasAuthorship W3048382340A5087533071 @default.
- W3048382340 hasBestOaLocation W30483823402 @default.
- W3048382340 hasConcept C104293457 @default.
- W3048382340 hasConcept C105795698 @default.
- W3048382340 hasConcept C120665830 @default.
- W3048382340 hasConcept C121332964 @default.
- W3048382340 hasConcept C126838900 @default.
- W3048382340 hasConcept C19499675 @default.