Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048386795> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W3048386795 endingPage "5525" @default.
- W3048386795 startingPage "5525" @default.
- W3048386795 abstract "Background: Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is an imaging technique which helps in visualizing and quantifying perfusion—one of the most important indicators of an organ’s state. This paper focuses on perfusion and filtration in the kidney, whose performance directly influences versatile functions of the body. In clinical practice, kidney function is assessed by measuring glomerular filtration rate (GFR). Estimating GFR based on DCE-MRI data requires the application of an organ-specific pharmacokinetic (PK) model. However, determination of the model parameters, and thus the characterization of GFR, is sensitive to determination of the arterial input function (AIF) and the initial choice of parameter values. Methods: This paper proposes a multi-layer perceptron network for PK model parameter determination, in order to overcome the limitations of the traditional model’s optimization techniques based on non-linear least-squares curve-fitting. As a reference method, we applied the trust-region reflective algorithm to numerically optimize the model. The effectiveness of the proposed approach was tested for 20 data sets, collected for 10 healthy volunteers whose image-derived GFR scores were compared with ground-truth blood test values. Results: The achieved mean difference between the image-derived and ground-truth GFR values was 2.35 mL/min/1.73 m2, which is comparable to the result obtained for the reference estimation method (−5.80 mL/min/1.73 m2). Conclusions: Neural networks are a feasible alternative to the least-squares curve-fitting algorithm, ensuring agreement with ground-truth measurements at a comparable level. The advantages of using a neural network are twofold. Firstly, it can estimate a GFR value without the need to determine the AIF for each individual patient. Secondly, a reliable estimate can be obtained, without the need to manually set up either the initial parameter values or the constraints thereof." @default.
- W3048386795 created "2020-08-18" @default.
- W3048386795 creator A5017593963 @default.
- W3048386795 creator A5040536435 @default.
- W3048386795 creator A5044027361 @default.
- W3048386795 creator A5047509459 @default.
- W3048386795 creator A5060325633 @default.
- W3048386795 date "2020-08-10" @default.
- W3048386795 modified "2023-10-17" @default.
- W3048386795 title "A Multi-Layer Perceptron Network for Perfusion Parameter Estimation in DCE-MRI Studies of the Healthy Kidney" @default.
- W3048386795 cites W1606143691 @default.
- W3048386795 cites W1893432856 @default.
- W3048386795 cites W1896978175 @default.
- W3048386795 cites W2002815620 @default.
- W3048386795 cites W2023494034 @default.
- W3048386795 cites W2046546576 @default.
- W3048386795 cites W2048037029 @default.
- W3048386795 cites W2051175680 @default.
- W3048386795 cites W2051653027 @default.
- W3048386795 cites W2054453801 @default.
- W3048386795 cites W2058209392 @default.
- W3048386795 cites W2060611128 @default.
- W3048386795 cites W2080108722 @default.
- W3048386795 cites W2089513130 @default.
- W3048386795 cites W2091929561 @default.
- W3048386795 cites W2093461708 @default.
- W3048386795 cites W2133965812 @default.
- W3048386795 cites W2140198969 @default.
- W3048386795 cites W2149338669 @default.
- W3048386795 cites W2156486561 @default.
- W3048386795 cites W2158206740 @default.
- W3048386795 cites W2339016435 @default.
- W3048386795 cites W2525723260 @default.
- W3048386795 cites W2804775736 @default.
- W3048386795 cites W2894269098 @default.
- W3048386795 cites W3008302334 @default.
- W3048386795 cites W3022988766 @default.
- W3048386795 cites W3101333873 @default.
- W3048386795 doi "https://doi.org/10.3390/app10165525" @default.
- W3048386795 hasPublicationYear "2020" @default.
- W3048386795 type Work @default.
- W3048386795 sameAs 3048386795 @default.
- W3048386795 citedByCount "6" @default.
- W3048386795 countsByYear W30483867952021 @default.
- W3048386795 countsByYear W30483867952022 @default.
- W3048386795 countsByYear W30483867952023 @default.
- W3048386795 crossrefType "journal-article" @default.
- W3048386795 hasAuthorship W3048386795A5017593963 @default.
- W3048386795 hasAuthorship W3048386795A5040536435 @default.
- W3048386795 hasAuthorship W3048386795A5044027361 @default.
- W3048386795 hasAuthorship W3048386795A5047509459 @default.
- W3048386795 hasAuthorship W3048386795A5060325633 @default.
- W3048386795 hasBestOaLocation W30483867951 @default.
- W3048386795 hasConcept C11413529 @default.
- W3048386795 hasConcept C126322002 @default.
- W3048386795 hasConcept C126838900 @default.
- W3048386795 hasConcept C143409427 @default.
- W3048386795 hasConcept C146849305 @default.
- W3048386795 hasConcept C154945302 @default.
- W3048386795 hasConcept C159641895 @default.
- W3048386795 hasConcept C167928553 @default.
- W3048386795 hasConcept C41008148 @default.
- W3048386795 hasConcept C50644808 @default.
- W3048386795 hasConcept C60908668 @default.
- W3048386795 hasConcept C71924100 @default.
- W3048386795 hasConceptScore W3048386795C11413529 @default.
- W3048386795 hasConceptScore W3048386795C126322002 @default.
- W3048386795 hasConceptScore W3048386795C126838900 @default.
- W3048386795 hasConceptScore W3048386795C143409427 @default.
- W3048386795 hasConceptScore W3048386795C146849305 @default.
- W3048386795 hasConceptScore W3048386795C154945302 @default.
- W3048386795 hasConceptScore W3048386795C159641895 @default.
- W3048386795 hasConceptScore W3048386795C167928553 @default.
- W3048386795 hasConceptScore W3048386795C41008148 @default.
- W3048386795 hasConceptScore W3048386795C50644808 @default.
- W3048386795 hasConceptScore W3048386795C60908668 @default.
- W3048386795 hasConceptScore W3048386795C71924100 @default.
- W3048386795 hasFunder F4320322511 @default.
- W3048386795 hasIssue "16" @default.
- W3048386795 hasLocation W30483867951 @default.
- W3048386795 hasOpenAccess W3048386795 @default.
- W3048386795 hasPrimaryLocation W30483867951 @default.
- W3048386795 hasRelatedWork W1501774291 @default.
- W3048386795 hasRelatedWork W1982685118 @default.
- W3048386795 hasRelatedWork W1987886632 @default.
- W3048386795 hasRelatedWork W2011271726 @default.
- W3048386795 hasRelatedWork W2130151498 @default.
- W3048386795 hasRelatedWork W2161649813 @default.
- W3048386795 hasRelatedWork W2386387936 @default.
- W3048386795 hasRelatedWork W2392110728 @default.
- W3048386795 hasRelatedWork W2970146327 @default.
- W3048386795 hasRelatedWork W4225307033 @default.
- W3048386795 hasVolume "10" @default.
- W3048386795 isParatext "false" @default.
- W3048386795 isRetracted "false" @default.
- W3048386795 magId "3048386795" @default.
- W3048386795 workType "article" @default.