Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048391413> ?p ?o ?g. }
- W3048391413 endingPage "118684" @default.
- W3048391413 startingPage "118684" @default.
- W3048391413 abstract "This work describes the application of low-field and medium-resolution 1H NMR (LF-1H NMR) combined with PLS and SVM multivariate regression techniques for fast prediction of five fundamental quality parameters of commercial Brazilian gasoline (specific gravity, distillation temperatures of 50 and 90 percent of recovered and olefinic and aromatic content). All these five parameters are of paramount importance to predict the fuel quality and the application of the developed PLS and SVM models showed prediction errors compared to the reference methodologies applied for these essays. Nevertheless, it is important to highlight that in a different way of the reference methodologies, such as distillation or chromatographic methods, the application of LF-1H NMR combined with PLS or SVM models enables the fast determination of those five parameters directly from a single LF-1H NMR spectrum, which is acquired without any sample pre-treatment nor dilution in deuterated solvents, and this whole process takes no more than 15 s." @default.
- W3048391413 created "2020-08-18" @default.
- W3048391413 creator A5029312260 @default.
- W3048391413 creator A5040418868 @default.
- W3048391413 creator A5052795176 @default.
- W3048391413 creator A5067341298 @default.
- W3048391413 creator A5081712494 @default.
- W3048391413 date "2020-12-01" @default.
- W3048391413 modified "2023-10-18" @default.
- W3048391413 title "Application of low-field and medium-resolution 1H NMR spectroscopy combined with chemometric methods for automotive gasoline quality control" @default.
- W3048391413 cites W1786686177 @default.
- W3048391413 cites W1964129314 @default.
- W3048391413 cites W1966447169 @default.
- W3048391413 cites W1972284658 @default.
- W3048391413 cites W1974942086 @default.
- W3048391413 cites W1975794584 @default.
- W3048391413 cites W1981248838 @default.
- W3048391413 cites W1990992764 @default.
- W3048391413 cites W1996609122 @default.
- W3048391413 cites W1999139609 @default.
- W3048391413 cites W2003066314 @default.
- W3048391413 cites W2017422910 @default.
- W3048391413 cites W2021211279 @default.
- W3048391413 cites W2024959924 @default.
- W3048391413 cites W2039167872 @default.
- W3048391413 cites W2045256553 @default.
- W3048391413 cites W2049031762 @default.
- W3048391413 cites W2054335324 @default.
- W3048391413 cites W2055382943 @default.
- W3048391413 cites W2066541111 @default.
- W3048391413 cites W2074362265 @default.
- W3048391413 cites W2077294168 @default.
- W3048391413 cites W2078090586 @default.
- W3048391413 cites W2086449363 @default.
- W3048391413 cites W2114604090 @default.
- W3048391413 cites W2119733790 @default.
- W3048391413 cites W2130454466 @default.
- W3048391413 cites W2153635508 @default.
- W3048391413 cites W2204223503 @default.
- W3048391413 cites W2209585890 @default.
- W3048391413 cites W2268953907 @default.
- W3048391413 cites W2276699317 @default.
- W3048391413 cites W2337655884 @default.
- W3048391413 cites W2344307348 @default.
- W3048391413 cites W2397469348 @default.
- W3048391413 cites W2522878691 @default.
- W3048391413 cites W2555243324 @default.
- W3048391413 cites W2592636100 @default.
- W3048391413 cites W2594493750 @default.
- W3048391413 cites W2596231840 @default.
- W3048391413 cites W2610550860 @default.
- W3048391413 cites W2731040012 @default.
- W3048391413 cites W2736299799 @default.
- W3048391413 cites W2795571026 @default.
- W3048391413 cites W2811210147 @default.
- W3048391413 cites W2883859120 @default.
- W3048391413 cites W2890165472 @default.
- W3048391413 cites W2896126548 @default.
- W3048391413 cites W2901811204 @default.
- W3048391413 cites W2903018620 @default.
- W3048391413 cites W2943449621 @default.
- W3048391413 cites W2972360519 @default.
- W3048391413 doi "https://doi.org/10.1016/j.fuel.2020.118684" @default.
- W3048391413 hasPublicationYear "2020" @default.
- W3048391413 type Work @default.
- W3048391413 sameAs 3048391413 @default.
- W3048391413 citedByCount "4" @default.
- W3048391413 countsByYear W30483914132021 @default.
- W3048391413 countsByYear W30483914132022 @default.
- W3048391413 countsByYear W30483914132023 @default.
- W3048391413 crossrefType "journal-article" @default.
- W3048391413 hasAuthorship W3048391413A5029312260 @default.
- W3048391413 hasAuthorship W3048391413A5040418868 @default.
- W3048391413 hasAuthorship W3048391413A5052795176 @default.
- W3048391413 hasAuthorship W3048391413A5067341298 @default.
- W3048391413 hasAuthorship W3048391413A5081712494 @default.
- W3048391413 hasConcept C103319777 @default.
- W3048391413 hasConcept C103697071 @default.
- W3048391413 hasConcept C113196181 @default.
- W3048391413 hasConcept C119857082 @default.
- W3048391413 hasConcept C12267149 @default.
- W3048391413 hasConcept C127413603 @default.
- W3048391413 hasConcept C138268822 @default.
- W3048391413 hasConcept C154945302 @default.
- W3048391413 hasConcept C161584116 @default.
- W3048391413 hasConcept C178790620 @default.
- W3048391413 hasConcept C185592680 @default.
- W3048391413 hasConcept C204030448 @default.
- W3048391413 hasConcept C21880701 @default.
- W3048391413 hasConcept C41008148 @default.
- W3048391413 hasConcept C43617362 @default.
- W3048391413 hasConcept C66974803 @default.
- W3048391413 hasConceptScore W3048391413C103319777 @default.
- W3048391413 hasConceptScore W3048391413C103697071 @default.
- W3048391413 hasConceptScore W3048391413C113196181 @default.
- W3048391413 hasConceptScore W3048391413C119857082 @default.
- W3048391413 hasConceptScore W3048391413C12267149 @default.
- W3048391413 hasConceptScore W3048391413C127413603 @default.