Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048394490> ?p ?o ?g. }
- W3048394490 abstract "Abstract Background Patients with systemic lupus erythematosus (SLE) have an increased risk of developing cardiovascular disease (CVD) and 30-40% have sub-clinical atherosclerosis on vascular ultrasound scanning. Standard measurements of serum lipids in clinical practice do not predict CVD risk in patients with SLE. We hypothesise that more detailed analysis of lipoprotein taxonomy could identify better predictors of CVD risk in SLE. Methods Eighty patients with SLE and no history of CVD underwent carotid and femoral ultrasound scans; 30 had atherosclerosis plaques (SLE-P) and 50 had no plaques (SLE-NP). Serum samples obtained at the time of the scan were analysed using a lipoprotein-focused metabolomics platform assessing 228 metabolites by nuclear magnetic resonance spectroscopy. Data was analysed using logistic regression and five binary classification models with 10-fold cross validation; decision tree, random forest, support vector machine and lasso (Least Absolute Shrinkage and Selection Operator) logistic regression with and without interactions. Results Univariate logistic regression identified four metabolites associated with the presence of sub-clinical plaque; three subclasses of very low density lipoprotein (VLDL) (percentage of free cholesterol in medium and large VLDL particles and percentage of phospholipids in chylomicrons and extremely large VLDL particles) and Leucine. Together with age, these metabolites were also within the top features identified by the lasso logistic regression (with and without interactions) and random forest machine learning models. Logistic regression with interactions differentiated between SLE-P and SLE-NP with greatest accuracy (0.800). Notably, percentage of free cholesterol in large VLDL particles and age were identified by all models as being important to differentiate between SLE-P and SLE-NP patients. Conclusion Serum metabolites are a promising biomarker for prediction of sub-clinical atherosclerosis development in SLE patients and could provide novel insight into mechanisms of early atherosclerosis development." @default.
- W3048394490 created "2020-08-18" @default.
- W3048394490 creator A5002114235 @default.
- W3048394490 creator A5007447165 @default.
- W3048394490 creator A5013104655 @default.
- W3048394490 creator A5019030198 @default.
- W3048394490 creator A5024237017 @default.
- W3048394490 creator A5028148209 @default.
- W3048394490 creator A5040190255 @default.
- W3048394490 creator A5046305649 @default.
- W3048394490 creator A5048888584 @default.
- W3048394490 creator A5052136163 @default.
- W3048394490 creator A5061702412 @default.
- W3048394490 creator A5065551958 @default.
- W3048394490 creator A5066566010 @default.
- W3048394490 creator A5072936660 @default.
- W3048394490 creator A5078901798 @default.
- W3048394490 date "2020-08-12" @default.
- W3048394490 modified "2023-10-18" @default.
- W3048394490 title "Using serum metabolomics analysis to predict sub-clinical atherosclerosis in patients with SLE" @default.
- W3048394490 cites W1548328591 @default.
- W3048394490 cites W1972871553 @default.
- W3048394490 cites W1979095334 @default.
- W3048394490 cites W1987111269 @default.
- W3048394490 cites W1988578259 @default.
- W3048394490 cites W1989016383 @default.
- W3048394490 cites W1989242866 @default.
- W3048394490 cites W2044410409 @default.
- W3048394490 cites W2047634083 @default.
- W3048394490 cites W2062101887 @default.
- W3048394490 cites W2068141066 @default.
- W3048394490 cites W2068509302 @default.
- W3048394490 cites W2070527591 @default.
- W3048394490 cites W2071675181 @default.
- W3048394490 cites W2083154566 @default.
- W3048394490 cites W2089103283 @default.
- W3048394490 cites W2098824980 @default.
- W3048394490 cites W2102227401 @default.
- W3048394490 cites W2102732029 @default.
- W3048394490 cites W2105719699 @default.
- W3048394490 cites W2113642869 @default.
- W3048394490 cites W2113844939 @default.
- W3048394490 cites W2113912243 @default.
- W3048394490 cites W2116802774 @default.
- W3048394490 cites W2117089861 @default.
- W3048394490 cites W2117383170 @default.
- W3048394490 cites W2119071155 @default.
- W3048394490 cites W2122084038 @default.
- W3048394490 cites W2130077869 @default.
- W3048394490 cites W2131414141 @default.
- W3048394490 cites W2150100875 @default.
- W3048394490 cites W2152796134 @default.
- W3048394490 cites W2155877309 @default.
- W3048394490 cites W2156830808 @default.
- W3048394490 cites W2157519867 @default.
- W3048394490 cites W2158901329 @default.
- W3048394490 cites W2162629156 @default.
- W3048394490 cites W2164576143 @default.
- W3048394490 cites W2165779517 @default.
- W3048394490 cites W2219267274 @default.
- W3048394490 cites W2261754997 @default.
- W3048394490 cites W2286999219 @default.
- W3048394490 cites W2296625401 @default.
- W3048394490 cites W2340036159 @default.
- W3048394490 cites W2501649131 @default.
- W3048394490 cites W2531766156 @default.
- W3048394490 cites W2561134679 @default.
- W3048394490 cites W2586930478 @default.
- W3048394490 cites W2587991149 @default.
- W3048394490 cites W2738941847 @default.
- W3048394490 cites W2894660847 @default.
- W3048394490 cites W2978403869 @default.
- W3048394490 cites W3042564502 @default.
- W3048394490 cites W3043051493 @default.
- W3048394490 doi "https://doi.org/10.1101/2020.08.11.20172536" @default.
- W3048394490 hasPublicationYear "2020" @default.
- W3048394490 type Work @default.
- W3048394490 sameAs 3048394490 @default.
- W3048394490 citedByCount "2" @default.
- W3048394490 countsByYear W30483944902022 @default.
- W3048394490 crossrefType "posted-content" @default.
- W3048394490 hasAuthorship W3048394490A5002114235 @default.
- W3048394490 hasAuthorship W3048394490A5007447165 @default.
- W3048394490 hasAuthorship W3048394490A5013104655 @default.
- W3048394490 hasAuthorship W3048394490A5019030198 @default.
- W3048394490 hasAuthorship W3048394490A5024237017 @default.
- W3048394490 hasAuthorship W3048394490A5028148209 @default.
- W3048394490 hasAuthorship W3048394490A5040190255 @default.
- W3048394490 hasAuthorship W3048394490A5046305649 @default.
- W3048394490 hasAuthorship W3048394490A5048888584 @default.
- W3048394490 hasAuthorship W3048394490A5052136163 @default.
- W3048394490 hasAuthorship W3048394490A5061702412 @default.
- W3048394490 hasAuthorship W3048394490A5065551958 @default.
- W3048394490 hasAuthorship W3048394490A5066566010 @default.
- W3048394490 hasAuthorship W3048394490A5072936660 @default.
- W3048394490 hasAuthorship W3048394490A5078901798 @default.
- W3048394490 hasBestOaLocation W30483944901 @default.
- W3048394490 hasConcept C11772777 @default.
- W3048394490 hasConcept C119857082 @default.
- W3048394490 hasConcept C126322002 @default.