Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048398812> ?p ?o ?g. }
- W3048398812 endingPage "1405" @default.
- W3048398812 startingPage "1405" @default.
- W3048398812 abstract "The development of antimicrobial resistance (AMR) represents a significant threat to humans and food animals. The use of antimicrobials in human and veterinary medicine may select for resistant bacteria, resulting in increased levels of AMR in these populations. As the threat presented by AMR increases, it becomes critically important to find methods for effectively interpreting minimum inhibitory concentration (MIC) tests. Currently, a wide array of techniques for analyzing these data can be found in the literature, but few guidelines for choosing among them exist. Here, we examine several quantitative techniques for analyzing the results of MIC tests and discuss and summarize various ways to model MIC data. The goal of this review is to propose important considerations for appropriate model selection given the purpose and context of the study. Approaches reviewed include mixture models, logistic regression, cumulative logistic regression, and accelerated failure time–frailty models. Important considerations in model selection include the objective of the study (e.g., modeling MIC creep vs. clinical resistance), degree of censoring in the data (e.g., heavily left/right censored vs. primarily interval censored), and consistency of testing parameters (e.g., same range of concentrations tested for a given antibiotic)." @default.
- W3048398812 created "2020-08-18" @default.
- W3048398812 creator A5014297164 @default.
- W3048398812 creator A5024850058 @default.
- W3048398812 creator A5041179064 @default.
- W3048398812 date "2020-08-12" @default.
- W3048398812 modified "2023-10-16" @default.
- W3048398812 title "Overview of Quantitative Methodologies to Understand Antimicrobial Resistance via Minimum Inhibitory Concentration" @default.
- W3048398812 cites W1165747256 @default.
- W3048398812 cites W1276872534 @default.
- W3048398812 cites W1518907966 @default.
- W3048398812 cites W1559027872 @default.
- W3048398812 cites W1562607772 @default.
- W3048398812 cites W1957445342 @default.
- W3048398812 cites W1967632969 @default.
- W3048398812 cites W1976361004 @default.
- W3048398812 cites W1979786541 @default.
- W3048398812 cites W1996018098 @default.
- W3048398812 cites W2013577585 @default.
- W3048398812 cites W2021675362 @default.
- W3048398812 cites W2024964992 @default.
- W3048398812 cites W2051795777 @default.
- W3048398812 cites W2067511489 @default.
- W3048398812 cites W2072642724 @default.
- W3048398812 cites W2089772998 @default.
- W3048398812 cites W2092643107 @default.
- W3048398812 cites W2094626198 @default.
- W3048398812 cites W2099620796 @default.
- W3048398812 cites W2109684694 @default.
- W3048398812 cites W2118842113 @default.
- W3048398812 cites W2118897654 @default.
- W3048398812 cites W2129118529 @default.
- W3048398812 cites W2133141352 @default.
- W3048398812 cites W2136852433 @default.
- W3048398812 cites W2139425275 @default.
- W3048398812 cites W2140993748 @default.
- W3048398812 cites W2143265463 @default.
- W3048398812 cites W2154664546 @default.
- W3048398812 cites W2214561307 @default.
- W3048398812 cites W2226073398 @default.
- W3048398812 cites W2295905303 @default.
- W3048398812 cites W2315451452 @default.
- W3048398812 cites W2414830033 @default.
- W3048398812 cites W2467520155 @default.
- W3048398812 cites W2475496673 @default.
- W3048398812 cites W2551267404 @default.
- W3048398812 cites W2592520660 @default.
- W3048398812 cites W2619049102 @default.
- W3048398812 cites W2689001823 @default.
- W3048398812 cites W2744554496 @default.
- W3048398812 cites W2754817715 @default.
- W3048398812 cites W2766792853 @default.
- W3048398812 cites W2796369145 @default.
- W3048398812 cites W2806428847 @default.
- W3048398812 cites W2886569573 @default.
- W3048398812 cites W2888090517 @default.
- W3048398812 cites W2899068429 @default.
- W3048398812 cites W2926592097 @default.
- W3048398812 cites W2943429827 @default.
- W3048398812 cites W2943518025 @default.
- W3048398812 cites W2945593793 @default.
- W3048398812 cites W2952668074 @default.
- W3048398812 cites W2962629846 @default.
- W3048398812 cites W2980626106 @default.
- W3048398812 cites W2989157446 @default.
- W3048398812 cites W3004310990 @default.
- W3048398812 cites W3030261765 @default.
- W3048398812 cites W40269969 @default.
- W3048398812 cites W4232009438 @default.
- W3048398812 cites W4240831450 @default.
- W3048398812 doi "https://doi.org/10.3390/ani10081405" @default.
- W3048398812 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7459578" @default.
- W3048398812 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32806615" @default.
- W3048398812 hasPublicationYear "2020" @default.
- W3048398812 type Work @default.
- W3048398812 sameAs 3048398812 @default.
- W3048398812 citedByCount "15" @default.
- W3048398812 countsByYear W30483988122020 @default.
- W3048398812 countsByYear W30483988122021 @default.
- W3048398812 countsByYear W30483988122022 @default.
- W3048398812 countsByYear W30483988122023 @default.
- W3048398812 crossrefType "journal-article" @default.
- W3048398812 hasAuthorship W3048398812A5014297164 @default.
- W3048398812 hasAuthorship W3048398812A5024850058 @default.
- W3048398812 hasAuthorship W3048398812A5041179064 @default.
- W3048398812 hasBestOaLocation W30483988121 @default.
- W3048398812 hasConcept C105795698 @default.
- W3048398812 hasConcept C119857082 @default.
- W3048398812 hasConcept C137668524 @default.
- W3048398812 hasConcept C149782125 @default.
- W3048398812 hasConcept C151730666 @default.
- W3048398812 hasConcept C151956035 @default.
- W3048398812 hasConcept C154945302 @default.
- W3048398812 hasConcept C176947019 @default.
- W3048398812 hasConcept C2776436953 @default.
- W3048398812 hasConcept C2779343474 @default.
- W3048398812 hasConcept C33923547 @default.
- W3048398812 hasConcept C41008148 @default.